首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   15篇
  259篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   5篇
  2015年   20篇
  2014年   11篇
  2013年   11篇
  2012年   27篇
  2011年   18篇
  2010年   13篇
  2009年   10篇
  2008年   15篇
  2007年   14篇
  2006年   11篇
  2005年   13篇
  2004年   22篇
  2003年   9篇
  2002年   16篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1976年   1篇
  1965年   1篇
  1956年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
41.
The effect of hypothyroidism on the lipid composition of synaptosomes, density and affinity of muscarinic receptor sites, and acetylcholinesterase activity in the cerebral cortex of young and aged rats was investigated. The animals were made hypothyroid by adding 0.05% propyl-2-thiouracil to their drinking water for four weeks. This pathological state induced an increase in the relative percentage of sphingomyelin in young rats. In aged rats hypothyroidism induced a decrease of sphingomyelin and glycerophosphocholine and an increase of cholesterol. The effect of hypothyroid state on cerebral cortex resulted in an increase of acethylcholinesterase activity both in young and aged rats and was also reflected in an increase of density of M1-AChRs but only in the former.  相似文献   
42.
A tool such as a prosthetic device that extends or restores movement may become part of the identity of the person to whom it belongs. For example, some individuals with spinal cord injury (SCI) adapt their body and action representation to incorporate their wheelchairs. However, it remains unclear whether the bodily assimilation of a relevant external tool develops as a consequence of altered sensory and motor inputs from the body or of prolonged confinement sitting or lying in the wheelchair. To explore such relationships, we used a principal component analysis (PCA) on collected structured reports detailing introspective experiences of wheelchair use in 55 wheelchair-bound individuals with SCI. Among all patients, the regular use of a wheelchair induced the perception that the body’s edges are not fixed, but are instead plastic and flexible to include the wheelchair. The PCA revealed the presence of three major components. In particular, the functional aspect of the sense of embodiment concerning the wheelchair appeared to be modulated by disconnected body segments. Neither an effect of time since injury nor an effect of exposure to/experience of was detected. Patients with lesions in the lower spinal cord and with loss of movement and sensation in the legs but who retained upper body movement showed a higher degree of functional embodiment than those with lesions in the upper spinal cord and impairment in the entire body. In essence, the tool did not become an extension of the immobile limbs; rather, it became an actual tangible substitution of the functionality of the affected body part. These findings suggest that the brain can incorporate relevant artificial tools into the body schema via the natural process of continuously updating bodily signals. The ability to embody new essential objects extends the potentiality of physically impaired persons and can be used for their rehabilitation.  相似文献   
43.
Combinatorial libraries of designed ankyrin repeat proteins (DARPins) have been proven to be a valuable source of specific binding proteins, as they can be expressed at very high levels and are very stable. We report here the selection of DARPins directed against a macromolecular multiprotein complex, the baseplate BppU·BppL complex of the lactococcal phage TP901-1. Using ribosome display, we selected several DARPins that bound specifically to the tip of the receptor-binding protein (RBP, the BppL trimer). The three selected DARPins display high specificity and affinity in the low nanomolar range and bind with a stoichiometry of one DARPin per BppL trimer. The crystal structure of a DARPin complexed with the RBP was solved at 2.1 Å resolution. The DARPin·RBP interface is of the concave (DARPin)-convex (RBP) type, typical of other DARPin protein complexes and different from what is observed with a camelid VHH domain, which penetrates the phage p2 RBP inter-monomer interface. Finally, phage infection assays demonstrated that TP901-1 infection of Lactococcus lactis cells was inhibited by each of the three selected DARPins. This study provides proof of concept for the possible use of DARPins to circumvent viral infection. It also provides support for the use of DARPins in co-crystallization, due to their rigidity and their ability to provide multiple crystal contacts.Lactococcus lactis is a Gram-positive bacterium widely used by the dairy industry for the production of an array of fermented milk products. Several industrial strains are sensitive to various distinct bacteriophages, mostly belonging to the Siphoviridae family. The lactococcal phage population is divided in at least 10 genetically distinct groups, of which the 936, c2, and P335 groups are prominent (1, 2). These L. lactis-infecting phages are considerably problematic in causing milk fermentation failures and resulting in decreased yields as well as low quality products (3). Preventing these infections has proven to be difficult because of lactococcal phage ubiquity, biodiversity, and genomic plasticity (4).Phage infection is initiated by binding of the phage receptor-binding protein (RBP),5 located within the baseplate at the distal part of the tail, to its receptor on the host cell surface (5). We have previously solved the crystal structures of the three RBPs of the lactococcal phages p2 (936) (6), bIL170 (936) (7), TP901-1 (P335) (8), and their chimera (9) as well as characterized their saccharide binding sites (10). The RBPs of these phages have a similar homotrimeric architecture related by a 3-fold axis. They comprise three domains: the N terminus shoulder domain, the interlaced β-prism neck domain, and the jellyroll head domain at the C terminus. The head domain has a saccharide binding site likely involved in host recognition. The lactococcal phage TP901-1 contains a double-disk-shaped baseplate at the tip of its tail which is made of a lower baseplate protein (BppL) and an upper baseplate protein (BppU) (11).One strategy to minimize bacteriophage infections is to competitively block phage adsorption by adding a protein that specifically binds to the phage RBP. A neutralizing llama VHH domain recognizing the head domain of the phage p2 RBP has been used to block L. lactis phage infection in milk fermentation (12). Lactococcal phages could readily escape neutralization by generating mutations interfering with VHH binding over the large interaction surface while keeping the central polysaccharide receptor binding pocket intact (10). Designed ankyrin repeat proteins (DARPins) may be another tool to neutralize viral infection, as they display distinct characteristics from VHHs and contain the required properties in terms of stability and facility of expression (13).Ankyrin repeat proteins are found in virtually all phyla and mediate specific protein-protein interactions in all cell compartments (14). The ankyrin elementary module is composed of 33 amino acids structured as a β-turn followed by two antiparallel α-helices and a loop connected to the β-turn of the next repeat. The repeats are stacked in a rigid manner. In creating a DARPin library, residues in each repeat were subdivided in two groups; (i) randomized residues constituting potential target interaction points and (ii) framework residues, important for maintaining the ankyrin fold (13). Libraries with varying repeat numbers were assembled and named according to the constituent repeat number; N2C and N3C libraries were used in this study, with two and three internal repeats inserted between the N and C capping repeats, respectively. DARPins are a powerful alternative to the use of antibodies, notably because of their very high expression rates in Escherichia coli, their high stability paired with high affinity, and successful reports of their use in co-crystallization (1519). Their architecture results in a very rigid structure that facilitates multiple crystal contacts and may promote crystal formation of the protein of interest by providing additional surfaces for such crystal contacts.We report here the selection and analysis of DARPin binders directed against a macromolecular multiprotein ensemble, the TP901-1 baseplate BppU·BppL protein complex. Ribosome display selection, ELISA screening, and surface plasmon resonance (SPR) measurements allowed us to isolate and characterize three N2C DARPins that recognized the RBP (BppL of the BppU·BppL complex) with high specificity and affinity. Further studies showed that the three DARPins bound to a unique area of the RBP at the tip of the head domain. QELS, MALS, UV, and refractometry coupled online with a size exclusion chromatography (SEC) column allowed us to monitor complex formation in solution as well as to estimate DARPin binding stoichiometry. Crystals of one of these selected DARPins in complex with the RBP were obtained, and the x-ray structure was solved at 2.1 Å resolution. This constitutes the first structure of a DARPin complex originating from the N2C library and the highest resolution for a DARPin complex structure reported to date. Finally, phage adsorption inhibition experiments demonstrated that the three N2C DARPins strongly inhibited L. lactis infection by TP901-1. We describe the DARPin·RBP interface and compare it to other DARPin interfaces. We also compare it to the p2 RBP·VHH5 complex, a previously selected llama VHH domain inhibiting p2 phage adsorption (12), to highlight the different binding mode of these two types of binders.  相似文献   
44.
Beta-galactoside alpha2,6 sialyltransferase (ST6Gal.I), the enzyme which adds sialic acid in alpha2,6-linkage on lactosaminic termini of glycoproteins, is frequently overexpressed in cancer, but its relationship with malignancy remains unclear. In this study, we have investigated the phenotypic changes induced by the expression of alpha2,6-sialylated lactosaminic chains in the human colon cancer cell line SW948 which was originally devoid of ST6Gal.I. Clones derived from transfection with the ST6Gal.I cDNA were compared with untransfected cells and mock transfectants. The ST6Gal.I-expressing clones show (1) increased adherence to fibronectin and collagen IV but not to hyaluronic acid. Treatment with Clostridium perfrigens neuraminidase reduces the binding to fibronectin and collagen IV of ST6Gal.I-expressing cells but not that of ST6Gal.I-negative cells; (2) accumulation and more focal distribution of beta1 integrins on the cell surface; (3) different distribution of actin fibers; (4) flatter morphology and reduced tendency to multilayer growth; (5) improved ability to heal a scratch wound; (6) reduced ability to grow at the subcutaneous site of injection in nude mice. Our data suggest that the presence of alpha2,6-linked sialic acid on membrane glycoconjugates increases the binding to extracellular matrix components, resulting in a membrane stabilization of beta1 integrins, further strengthening the binding. This mechanism can provide a basis for the flatter morphology and the reduced tendency to multilayer growth, resulting in a more ordered tissue organization. These data indicate that in the cell line SW948, the effect of ST6Gal.I expression is consistent with the attenuation of the neoplastic phenotype.  相似文献   
45.
Central obesity shows impaired platelet responses to the antiaggregating effects of nitric oxide (NO), prostacyclin, and their effectors—guanosine 3′,5′‐cyclic monophosphate (cGMP) and adenosine 3′,5′‐cyclic monophosphate (cAMP). The influence of weight loss on these alterations is not known. To evaluate whether a diet‐induced body‐weight reduction restores platelet sensitivity to the physiological antiaggregating agents and reduces platelet activation in subjects affected by central obesity, we studied 20 centrally obese subjects before and after a 6‐month diet intervention aiming at reducing body weight by 10%, by measuring (i) insulin sensitivity (homeostasis model assessment of insulin resistance (HOMAIR)); (ii) plasma lipids; (iii) circulating markers of inflammation of adipose tissue and endothelial dysfunction, and of platelet activation (i.e., soluble CD‐40 ligand (sCD‐40L) and soluble P‐selectin (sP‐selectin)); (iv) ability of the NO donor sodium nitroprusside (SNP), the prostacyclin analog Iloprost and the cyclic nucleotide analogs 8‐bromoguanosine 3′,5′‐cyclic monophosphate (8‐Br‐cGMP) and 8‐bromoadenosine 3′,5′‐cyclic monophosphate (8‐Br‐cAMP) to reduce platelet aggregation in response to adenosine‐5‐diphosphate (ADP); and (v) ability of SNP and Iloprost to increase cGMP and cAMP. The 10 subjects who reached the body‐weight target showed significant reductions of insulin resistance, adipose tissue, endothelial dysfunction, and platelet activation, and a significant increase of the ability of SNP, Iloprost, 8‐Br‐cGMP, and 8‐Br‐cAMP to reduce ADP‐induced platelet aggregation and of the ability of SNP and Iloprost to increase cyclic nucleotide concentrations. No change was observed in the 10 subjects who did not reach the body‐weight target. Changes of platelet function correlated with changes of HOMAIR. Thus, in central obesity, diet‐induced weight loss reduces platelet activation and restores the sensitivity to the physiological antiaggregating agents, with a correlation with improvements in insulin sensitivity.  相似文献   
46.
The aim of this study was to verify if changes in blood glucose, creatinine, urea, and fibrinogen concentrations evaluated at birth reflect gross placenta abnormalities, and are useful to identify foals that suffered from placental dysfunction. A total of 92 mares were included in the present study: 68 delivered healthy foals and they were included in group 1; 24 delivered sick foals and they were included in group 2. In group 2, foals' clinical diagnoses included perinatal asphyxia syndrome (PAS; n = 20) and prematurity and/or dysmaturity (n = 4). The proportion of sick foals was greater when placental abnormalities were observed (χ2 [1, n = 89] = 5.00; P = 0.025). Serum creatinine concentration at birth was higher in sick than in healthy foals (P = 0.003), and blood glucose concentrations at birth was smaller in sick than in healthy foals (P = 0.007). No difference was found in blood chemistry results between survivors and nonsurvivors of group 2. Serum creatinine concentration was higher in foals born from grossly abnormal than in foals born from grossly normal placenta (P = 0.029), and it was higher in foals affected by PAS (311.17 μmol/L) than in healthy foals (238.24 μmol/L) (P = 0.004). In a clinical setting, serum creatinine and blood glucose concentrations should be evaluated at birth, particularly in foals born from grossly abnormal placenta. The association of clinical and laboratory data could be particularly important to promptly identify and treat foals with a higher risk to develop PAS.  相似文献   
47.
The type II secretion system enables gram-negative bacteria to secrete exoproteins into the extracellular milieu. We performed biophysical and biochemical experiments to identify systematic interactions between Pseudomonas aeruginosa Xcp type II secretion system components and their substrates. We observed that three Xcp components, XcpP(C), the secretin XcpQ(D), and the pseudopilus tip, directly and specifically interact with secreted exoproteins. We established that XcpP(C), in addition to its interaction with the substrate, likely shields the entire periplasmic portion of the secreton. It can therefore be considered as the recruiter of the machinery. Moreover, the direct interaction observed between the substrate and the pseudopilus tip validates the piston model hypothesis, in which the pseudopilus pushes the substrate through the secretin pore during the secretion process. All together, our results allowed us to propose a model of the different consecutive steps followed by the substrate during the type II secretion process.  相似文献   
48.
49.
Agam (Anopheles gambiae) relies on its olfactory system to target human prey, leading eventually to the injection of Plasmodium falciparum, the malaria vector. OBPs (odorant-binding proteins) are the first line of proteins involved in odorant recognition. They interact with olfactory receptors and thus constitute an interesting target for insect control. In the present study, we undertook a large-scale analysis of proteins belonging to the olfactory system of Agam with the aim of preventing insect bites by designing strong olfactory repellents. We determined the three-dimensional structures of several Agam OBPs, either alone or in complex with model compounds. In the present paper, we report the first three-dimensional structure of a member of the C-plus class of OBPs, AgamOBP47, which has a longer sequence than classical OBPs and contains six disulfide bridges. AgamOBP47 possesses a core of six α-helices and three disulfide bridges, similar to the classical OBP fold. Two extra loops and the N- and C-terminal extra segments contain two additional α-helices and are held in conformation by three disulfide bridges. They are located either side of the classical OBP core domain. The binding site of OBP47 is located between the core and the additional domains. Two crevices are observed on opposite sides of OBP47, which are joined together by a shallow channel of sufficient size to accommodate a model of the best-tested ligand. The binding sites of C-plus class OBPs therefore exhibit different characteristics, as compared with classical OBPs, which should lead to markedly diverse functional implications.  相似文献   
50.
The behavior of insects and their perception of their surroundings are driven, in a large part, by odorants and pheromones. This is especially true for social insects, such as the honey bee, where the queen controls the development and the caste status of the other individuals. Pheromone perception is a complex phenomenon relying on a cascade of recognition events, initiated in antennae by pheromone recognition by a pheromone-binding protein and finishing with signal transduction at the axon membrane level. With to the objective of deciphering this initial step, we have determined the structures of the bee antennal pheromone-binding protein (ASP1) in the apo form and in complex with the main component of the queen mandibular pheromonal mixture, 9-keto-2(E)-decenoic acid (9-ODA) and with nonpheromonal components. In the apo protein, the C terminus obstructs the binding site. In contrast, ASP1 complexes have different open conformations, depending on the ligand shape, leading to different volumes of the binding cavity. The binding site integrity depends on the C terminus (111-119) conformation, which involves the interplay of two factors; i.e. the presence of a ligand and a low pH. Ligand binding to ASP1 is favored by low pH, opposite to what is observed with other pheromone-binding proteins, such as those of Bombyx mori and Anopheles gambiae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号