首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2018年   1篇
  2016年   2篇
  2015年   7篇
  2014年   5篇
  2013年   10篇
  2012年   10篇
  2011年   15篇
  2010年   12篇
  2009年   7篇
  2008年   21篇
  2007年   16篇
  2006年   17篇
  2005年   18篇
  2004年   17篇
  2003年   16篇
  2002年   14篇
  2001年   1篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1973年   2篇
排序方式: 共有245条查询结果,搜索用时 921 毫秒
161.
GABA(A) receptor (GABA(A)R) expression level is inversely correlated with the proliferation rate of astrocytes after stroke or during malignancy of astrocytoma, leading to the hypothesis that GABA(A)R expression/activation may work as a cell proliferation repressor. A number of vasoactive peptides exhibit the potential to modulate astrocyte proliferation, and the question whether these mechanisms may imply alteration in GABA(A)R-mediated functions and/or plasma membrane densities is open. The peptide urotensin II (UII) activates a G protein-coupled receptor named UT, and mediates potent vasoconstriction or vasodilation in mammalian vasculature. We have previously demonstrated that UII activates a PLC/PIPs/Ca(2+) transduction pathway, via both G(q) and G(i/o) proteins and stimulates astrocyte proliferation in culture. It was also shown that UT/G(q)/IP(3) coupling is regulated by the GABA(A)R in rat cultured astrocytes. Here we report that UT and GABA(A)R are co-expressed in cerebellar glial cells from rat brain slices, in human native astrocytes and in glioma cell line, and that UII inhibited the GABAergic activity in rat cultured astrocytes. In CHO cell line co-expressing human UT and combinations of GABA(A)R subunits, UII markedly depressed the GABA current (β(3)γ(2)>α(2)β(3)γ(2)>α(2)β(1)γ(2)). This effect, characterized by a fast short-term inhibition followed by drastic and irreversible run-down, is not relayed by G proteins. The run-down partially involves Ca(2+) and phosphorylation processes, requires dynamin, and results from GABA(A)R internalization. Thus, activation of the vasoactive G protein-coupled receptor UT triggers functional inhibition and endocytosis of GABA(A)R in CHO and human astrocytes, via its receptor C-terminus. This UII-induced disappearance of the repressor activity of GABA(A)R, may play a key role in the initiation of astrocyte proliferation.  相似文献   
162.
The carboxyl terminus of Hsc70-interacting protein (CHIP) is an Hsp70 co-chaperone and a U-box ubiquitin ligase that plays a crucial role in protein quality control in higher eukaryotes. The yeast Yarrowia lipolytica is the only known hemiascomycete where a CHIP ortholog is found. Here, we characterize Y. lipolyticas CHIP ortholog (Yl.Chn1p) and document its interactions with components of the protein quality control machinery. We show that Yl.Chn1p is non-essential unless Y. lipolytica is severely stressed. We sought for genetic interactions among key components of the Y. lipolytica protein quality control arsenal, including members of the Ssa-family of Hsp70 molecular chaperones, the Yl.Bag1p Hsp70 nucleotide exchange factor, the Yl.Chn1p and Yl.Ufd2p U-box ubiquitin ligases, the Yl.Doa10p and Yl.Hrd1p RING-finger ubiquitin ligases, and the Yl.Hsp104p disaggregating molecular chaperone. Remarkably, no synthetic phenotypes were observed among null alleles of the corresponding genes in most cases, suggesting that overlapping pathways efficiently act to enable Y. lipolytica cells to survive under harsh conditions. Yl.Chn1p interacts with mammalian and Saccharomyces cerevisiae members of the Hsp70 family in vitro, and these interactions are differently regulated by Hsp70 co-chaperones. We demonstrate notably that Yl.Chn1p/Ssa1p interaction is Fes1p-dependent and the formation of an Yl.Chn1p/Ssa1p/Sse1p ternary complex. Finally, we show that, similar to Sse1p, Yl.Chn1p can act as a “holdase” to prevent the aggregation of a heat-denatured protein.  相似文献   
163.
How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus.  相似文献   
164.

Background

Genetic evidence for diversifying selection identified the Merozoite Surface Protein1 block2 (PfMSP1 block2) as a putative target of protective immunity against Plasmodium falciparum. The locus displays three family types and one recombinant type, each with multiple allelic forms differing by single nucleotide polymorphism as well as sequence, copy number and arrangement variation of three amino acid repeats. The family-specific antibody responses observed in endemic settings support immune selection operating at the family level. However, the factors contributing to the large intra-family allelic diversity remain unclear. To address this question, population allelic polymorphism and sequence variant-specific antibody responses were studied in a single Senegalese rural community where malaria transmission is intense and perennial.

Results

Family distribution showed no significant temporal fluctuation over the 10 y period surveyed. Sequencing of 358 PCR fragments identified 126 distinct alleles, including numerous novel alleles in each family and multiple novel alleles of recombinant types. The parasite population consisted in a large number of low frequency alleles, alongside one high-frequency and three intermediate frequency alleles. Population diversity tests supported positive selection at the family level, but showed no significant departure from neutrality when considering intra-family allelic sequence diversity and all families combined. Seroprevalence, analysed using biotinylated peptides displaying numerous sequence variants, was moderate and increased with age. Reactivity profiles were individual-specific, mapped to the family-specific flanking regions and to repeat sequences shared by numerous allelic forms within a family type. Seroreactivity to K1-, Mad20- and R033 families correlated with the relative family genotype distribution within the village. Antibody specificity remained unchanged with cumulated exposure to an increasingly large number of alleles.

Conclusion

The Pfmsp1 block2 locus presents a very large population sequence diversity. The lack of stable acquisition of novel antibody specificities despite exposure to novel allelic forms is reminiscent of clonal imprinting. The locus appears under antibody-mediated diversifying selection in a variable environment that maintains a balance between the various family types without selecting for sequence variant allelic forms. There is no evidence of positive selection for intra-family sequence diversity, consistent with the observed characteristics of the antibody response.  相似文献   
165.
The main failure of antiretroviral therapy is the lack of restoration of HIV-specific CD4(+) T cells. IL-7, which has been shown to be a crucial cytokine for thymopoiesis, has been envisaged as an additive therapeutic strategy. However, in vitro studies suggest that IL-7 might sustain HIV replication in thymocytes and T lymphocytes. Therefore, in the present study, we evaluated the effect of IL-7 on both T cell renewal and viral load in SIVmac-infected young macaques in the absence of antiretroviral therapy. This evaluation was conducted during the asymptomatic phase in view of a potential treatment of HIV patients. We show that IL-7 induces both a central renewal and a peripheral expansion of T lymphocytes associated with cell activation. No alarming modulation of the other hemopoietic cells was observed. No increase in the viral load was shown in blood or lymph nodes. These data strengthen the rationale for the use of IL-7 as an efficient immunotherapy in AIDS.  相似文献   
166.
167.
Contact hypersensitivity (CHS) is a T cell-mediated, Ag-specific skin inflammation induced by skin exposure to haptens in sensitized individuals. Th1/T cytotoxic 1 cells are effector cells of CHS, whereas Th2/T regulatory CD4(+) T cells have down-regulating properties. We have previously shown that CHS to 2,4-dinitrofluorobenzene is mediated by specific CD8(+) effector cells, whose cytolytic activity is mandatory for induction of skin inflammation. In this study, using immunohistochemistry and RT-PCR analysis, we show that CD8(+) T cells are rapidly recruited into the skin at the site of hapten challenge before the onset of clinical and histological signs of skin inflammation. This early CD8(+) T cell recruitment is concomitant with: 1) transient IFN-gamma mRNA expression suggesting local activation of effector cells; and 2) induction of keratinocyte (KC) apoptosis which gradually increased to a maximum at the peak of the CHS response. Alternatively, skin infiltration of CD4(+) T cells occurred later and coincided with the peak of the CHS reaction and the beginning of the resolution of skin inflammation. Mice deficient in CD8(+) T cells did not develop CHS, whereas mice deficient in CD4(+) T cells developed an enhanced inflammatory response with increased numbers of CD8(+) T cells recruited in the skin associated with massive KC apoptosis. These data show that CHS is due to the early and selective recruitment in the skin of CD8(+) T cytotoxic 1 effector cells responsible for KC apoptosis.  相似文献   
168.
In wild-type Nicotiana plumbaginifolia and other higher plants, nitrate reductase (NR) is rapidly inactivated/activated in response to dark/light transitions. Inactivation of NR is believed to be caused by phosphorylation at a special conserved regulatory Ser residue, Ser 521, and interactions with divalent cations and inhibitory 14-3-3 proteins. A transgenic N. plumbaginifolia line (S(521)) was constructed where the Ser 521 had been changed by site-directed mutagenesis into Asp. This mutation resulted in complete abolishment of inactivation in response to light/dark transitions or other treatments known to inactivate NR. During prolonged darkness, NR in wild-type plants is in the inactivated form, whereas NR in the S(521) line is always in the active form. Differences in degradation rate between NR from S(521) and lines with non-mutated NR were not found. Kinetic constants like Km values for NADH and NO3(-) were not changed, but a slightly different pH profile was observed for mutated NR as opposed to non-mutated NR. Under optimal growth conditions, the phenotype of the S(521) plants was not different from the wild type (WT). However, when plants were irrigated with high nitrate concentration, 150 mM, the transgenic plants accumulated nitrite in darkness, and young leaves showed chlorosis.  相似文献   
169.
L-glutamate is both the major brain excitatory neurotransmitter and a potent neurotoxin in mammals. Glutamate excitotoxicity is partly responsible for cerebral traumas evoked by ischemia and has been implicated in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). In contrast, very little is known about the function or potential toxicity of glutamate in the insect brain. Here, we show that decreasing glutamate buffering capacity is neurotoxic in Drosophila. We found that the only Drosophila high-affinity glutamate transporter, dEAAT1, is selectively addressed to glial extensions that project ubiquitously through the neuropil close to synaptic areas. Inactivation of dEAAT1 by RNA interference led to characteristic behavior deficits that were significantly rescued by expression of the human glutamate transporter hEAAT2 or the administration in food of riluzole, an anti-excitotoxic agent used in the clinic for human ALS patients. Signs of oxidative stress included hypersensitivity to the free radical generator paraquat and rescue by the antioxidant melatonin. Inactivation of dEAAT1 also resulted in shortened lifespan and marked brain neuropil degeneration characterized by widespread microvacuolization and swollen mitochondria. This suggests that the dEAAT1-deficient fly provides a powerful genetic model system for molecular analysis of glutamate-mediated neurodegeneration.  相似文献   
170.
The OZF (ZNF146) protein is a 33 kDa Kruppel protein, composed solely of 10 zinc finger motifs. It is overexpressed in the majority of pancreatic cancers and in more than 80% of colorectal cancers. We found an interaction between OZF and the telomeric hRap1 protein with a yeast two-hybrid screen. hRap1 (TERF2IP) is an ortholog of the yeast telomeric protein, scRap1 originally identified as a regulator of telomere length. In HeLa cells, it interacts with TRF2, a telomere repeat binding factor whose inactivation causes a dysregulation of telomere length and structure. Immunoprecipitation with anti-hRap1 antibodies in conditions that allow the purification of proteins associated with hRap1, demonstrated that OZF binds to hRap1 in HeLa cells. Using deletion mutants, we mapped the interacting domain of each protein. The three zinc fingers at the C-terminus of OZF interact with a region of hRap1 located downstream of the coil domain. It involves a stretch of at least 25 amino acids at the C-terminus of hRap1 that interact with TRF2. This suggests that OZF overexpression in tumours may alter the balance between hRap1 and other telomeric proteins and therefore that OZF function may be linked to telomere regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号