首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   84篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   10篇
  2018年   7篇
  2017年   8篇
  2016年   14篇
  2015年   21篇
  2014年   18篇
  2013年   35篇
  2012年   48篇
  2011年   41篇
  2010年   31篇
  2009年   32篇
  2008年   38篇
  2007年   41篇
  2006年   44篇
  2005年   44篇
  2004年   40篇
  2003年   33篇
  2002年   33篇
  2001年   26篇
  2000年   30篇
  1999年   22篇
  1998年   9篇
  1997年   10篇
  1996年   9篇
  1995年   10篇
  1994年   11篇
  1993年   4篇
  1992年   30篇
  1991年   27篇
  1990年   25篇
  1989年   20篇
  1988年   24篇
  1987年   18篇
  1986年   14篇
  1985年   17篇
  1984年   9篇
  1983年   9篇
  1982年   9篇
  1981年   7篇
  1980年   4篇
  1979年   7篇
  1978年   6篇
  1977年   4篇
  1976年   9篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
排序方式: 共有941条查询结果,搜索用时 31 毫秒
71.
Mercury alters thefunction of proteins by reacting with cysteinyl sulfhydryl(SH) groups. Theinorganic form (Hg2+) is toxicto epithelial tissues and interacts with various transport proteinsincluding the Na+ pump andCl channels. In this study,we determined whether theNa+-K+-Clcotransporter type 1 (NKCC1), a major ion pathway in secretory tissues,is also affected by mercurial substrates. To characterize theinteraction, we measured the effect ofHg2+ on ion transport by thesecretory shark and human cotransporters expressed in HEK-293 cells.Our studies show that Hg2+inhibitsNa+-K+-Clcotransport, with inhibitor constant(Ki) values of25 µM for the shark carrier (sNKCC1) and 43 µM for thehuman carrier. In further studies, we took advantage of speciesdifferences in Hg2+ affinity toidentify residues involved in the interaction. An analysis ofhuman-shark chimeras and of an sNKCC1 mutant(Cys-697Leu) reveals that transmembrane domain 11 plays an essential role in Hg2+binding. We also show that modification of additionalSH groups by thiol-reactingcompounds brings about inhibition and that the binding sites are notexposed on the extracellular face of the membrane.

  相似文献   
72.
X-linked myotubular myopathy is characterised by neonatal hypotonia, muscle weakness and respiratory distress in affected males, leading often to early death, although prolonged survival is observed in milder forms, or as a result of prolongation of ventilation support. It is caused by mutations in the MTM1 gene, which encodes a phosphatase called myotubularin, which has been highly conserved during evolution, down to yeasts ( S. cerevisiae and S. pombe). To date, 251 mutations have been identified in unrelated families, corresponding to 158 different disease-associated mutations, which are widespread throughout the gene. We have found additional mutations in 77 patients, including 35 novel ones. We identified a missense mutation N180K in a 67-year-old grandfather (the oldest known patient with an MTM1 mutation), previously suspected to have autosomal centronuclear myopathy, and in his two grandsons also mildly affected. Mild and moderate phenotypes associated with novel missense mutations and with a translation initiation defect mutation are discussed, as well as severe phenotypes associated with particular novel mutations. With the present report, 192 different mutations in the MTM1 gene have been described in 328 families. The spectrum of mutations is now enlarged from the very severe classic neonatal phenotype to very mild phenotype allowing survival to the age of 67 years.  相似文献   
73.
The chromatin remodeling process that takes place during spermiogenesis in mammals is characterized by a transient increase in DNA single-strand breaks (SSB). The mammalian transition proteins (TPs) are expressed at a high level at mid-spermiogenesis steps coincident with chromatin remodeling and could be involved in the repair of these lesions since SSB are no longer detected in terminally differentiated spermatids. We report that TP1 can stimulate the repair of SSB in vitro and demonstrate that in vivo repair of UV-induced DNA lesions is enhanced in mammalian cells stably expressing TP1. These results suggest that, aside from its role in DNA compaction, this major transition protein may contribute to the yet unidentified enzymatic activity responsible for the repair of SSB at mid-spermiogenesis steps. These results also suggest that the TP1 proteins have the potential to participate in the repair process following genotoxic insults and therefore may play an active role in the maintenance of the integrity of the male haploid genome during spermiogenesis.  相似文献   
74.
PDZ domain-containing proteins play an important role in the targeting and localization of synaptic membrane proteins. Here, we report an interaction between the PDZ domain-containing protein PICK1 and monoamine neurotransmitter transporters in vitro and in vivo. In dopaminergic neurons, PICK1 colocalizes with the dopamine transporter (DAT) and forms a stable protein complex. Coexpression of PICK1 with DAT in mammalian cells and neurons in culture results in colocalization of the two proteins in a cluster pattern and an enhancement of DAT uptake activity through an increase in the number of plasma membrane DAT. Deletion of the PDZ binding site at the carboxyl terminus of DAT abolishes its association with PICK1 and impairs the localization of the transporter in neurons. These findings indicate a role for PDZ-mediated protein interactions in the localization, expression, and function of monoamine transporters.  相似文献   
75.
Opa adhesins of pathogenic Neisseria species target four members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. CEACAM receptors mediate opsonization-independent phagocytosis of Neisseria gonorrhoeae by human granulocytes and each receptor individually can mediate gonococcal invasion of epithelial cells. We show here that gonococcal internalization occurs by distinct mechanisms depending on the CEACAM receptor expressed. For the invasion of epithelial cell lines via CEACAM1 and CEACAM6, a pathogen-directed reorganization of the actin cytoskeleton is not required. In marked contrast, ligation of CEACAM3 triggers a dramatic but localized reorganization of the host cell surface leading to highly efficient engulfment of bacteria in a process regulated by the small GTPases Rac1 and Cdc42, but not Rho. Two tyrosine residues of a cytoplasmic immune receptor tyrosine-based activating motif of CEACAM3 are essential for the induction of phagocytic actin structures and subsequent gonococcal internalization. The granulocyte-specific CEACAM3 receptor has properties of a single chain phagocytic receptor and may thus contribute to innate immunity by the elimination of Neisseria and other CEACAM-binding pathogens that colonize human mucosal surfaces.  相似文献   
76.
Experimental genetic approaches to addiction   总被引:4,自引:0,他引:4  
Laakso A  Mohn AR  Gainetdinov RR  Caron MG 《Neuron》2002,36(2):213-228
Drugs of abuse are able to elicit compulsive drug-seeking behaviors upon repeated administration, which ultimately leads to the phenomenon of addiction. Evidence indicates that the susceptibility to develop addiction is influenced by sources of reinforcement, variable neuroadaptive mechanisms, and neurochemical changes that together lead to altered homeostasis of the brain reward system. Addiction is hypothesized to be a cycle of progressive dysregulation of the brain reward system that results in the compulsive use and loss of control over drug taking and the initiation of behaviors associated with drug seeking. The view that addiction represents a pathological state of reward provides an approach to identifying the factors that contribute to vulnerability, addiction, and relapse in genetic animal models.  相似文献   
77.
RCAS1 is associated with ductal breast cancer progression   总被引:6,自引:0,他引:6  
RCAS1/EBAG9 (receptor-binding cancer antigen expressed on SiSo cells/ estrogen receptor-binding fragment-associated gene 9), an estrogen-transcribed protein, has been shown to be expressed in a wide variety of cancers, including uterine, ovarian, and lung cancer cells. Soluble and membranous RCAS1 proteins may play a role in the immune escape of tumor cells by promoting T lymphocyte inhibition of growth and apoptosis. In the present report, the presence of RCAS1 was revealed in human ductal breast cancer biopsies by immunohistochemistry. Its cytoplasmic expression was exhibited in cancer cells obtained from tumor biopsies and in breast cancer cell lines. RCAS1 significantly correlated with tumor grade. In addition, RCAS1 was identified in MCF7 culture supernatants. Those observations suggest that RCAS1 is a new marker for breast cancer progression and a possible mechanism for breast cancer immune escape.  相似文献   
78.
The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.  相似文献   
79.
80.
The chromosomes of ciliates are fragmented at reproducible sites during the development of the polyploid somatic macronucleus, but the mechanisms involved appear to be quite diverse in different species. In Paramecium aurelia, the process is imprecise and results in de novo telomere addition at locally heterogeneous positions. To search for possible determinants of chromosome fragmentation, we have studied an ~21-kb fragmentation region from the germ line genome of P. primaurelia. The mapping and sequencing of alternative macronuclear versions of the region show that two distinct multicopy elements, a minisatellite and a degenerate transposon copy, are eliminated by an imprecise mechanism leading either to chromosome fragmentation and the formation of new telomeres or to the rejoining of flanking sequences. Heterogeneous internal deletions occur between short direct repeats containing TA dinucleotides. The complex rearrangement patterns produced vary slightly among genetically identical cell lines, show non-Mendelian inheritance during sexual reproduction, and can be experimentally modified by transformation of the maternal macronucleus with homologous sequences. These results suggest that chromosome fragmentation in Paramecium is the consequence of imprecise DNA elimination events that are distinct from the precise excision of single-copy internal eliminated sequences and that target multicopy germ line sequences by homology-dependent epigenetic mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号