首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   769篇
  免费   72篇
  2018年   5篇
  2017年   5篇
  2016年   11篇
  2015年   20篇
  2014年   26篇
  2013年   36篇
  2012年   34篇
  2011年   54篇
  2010年   18篇
  2009年   21篇
  2008年   27篇
  2007年   27篇
  2006年   22篇
  2005年   24篇
  2004年   33篇
  2003年   35篇
  2002年   24篇
  2001年   14篇
  2000年   22篇
  1999年   20篇
  1998年   15篇
  1997年   8篇
  1996年   9篇
  1995年   9篇
  1994年   10篇
  1993年   8篇
  1992年   8篇
  1991年   9篇
  1990年   12篇
  1989年   16篇
  1988年   12篇
  1987年   9篇
  1986年   11篇
  1985年   11篇
  1984年   20篇
  1983年   10篇
  1982年   13篇
  1981年   11篇
  1979年   11篇
  1978年   6篇
  1977年   5篇
  1976年   10篇
  1975年   10篇
  1974年   11篇
  1973年   5篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
  1959年   5篇
  1950年   4篇
排序方式: 共有841条查询结果,搜索用时 31 毫秒
71.
Muscle cells respond to mechanical stretch stimuli by triggering downstream signals for myocyte growth and survival. The molecular components of the muscle stretch sensor are unknown, and their role in muscle disease is unclear. Here, we present biophysical/biochemical studies in muscle LIM protein (MLP) deficient cardiac muscle that support a selective role for this Z disc protein in mechanical stretch sensing. MLP interacts with and colocalizes with telethonin (T-cap), a titin interacting protein. Further, a human MLP mutation (W4R) associated with dilated cardiomyopathy (DCM) results in a marked defect in T-cap interaction/localization. We propose that a Z disc MLP/T-cap complex is a key component of the in vivo cardiomyocyte stretch sensor machinery, and that defects in the complex can lead to human DCM and associated heart failure.  相似文献   
72.
73.
Kv4.2 is a voltage-gated potassium channel that is critical in controlling the excitability of myocytes and neurons. Processes that influence trafficking and surface distribution patterns of Kv4.2 will affect its ability to contribute to cellular functions. The scaffolding/clustering protein PSD-95 regulates trafficking and distribution of several receptors and Shaker family Kv channels. We therefore investigated whether the C-terminal valine-serine-alanine-leucine (VSAL) of Kv4.2 is a novel binding motif for PSD-95. By using co-immunoprecipitation assays, we determined that full-length Kv4.2 and PSD-95 interact when co-expressed in mammalian cell lines. Mutation analysis in this heterologous expression system showed that the VSAL motif of Kv4.2 is necessary for PSD-95 binding. PSD-95 increased the surface expression of Kv4.2 protein and caused it to cluster, as shown by deconvolution microscopy and biotinylation assays. Deleting the C-terminal VSAL motif of Kv4.2 eliminated these effects, as did substituting a palmitoylation-deficient PSD-95 mutant. In addition to these effects of PSD-95 on Kv4.2 distribution, the channel itself promoted redistribution of PSD-95 to the cell surface in the heterologous expression system. This work represents the first evidence that a member of the Shal subfamily of Kv channels can bind to PSD-95, with functional consequences.  相似文献   
74.
We reported previously that tyrosine 62 of the beta2 subunit of the gamma-aminobutyric acid, type A (GABA(A)) receptor is an important determinant of high affinity agonist binding and that recombinant alpha1beta2gamma2(L) receptors carrying the Y62S mutation lack measurable high affinity sites for [3H]muscimol. We have now examined the effects of disrupting these sites on the macroscopic desensitization properties of receptors expressed in Xenopus oocytes. Desensitization was measured by the ability of low concentrations of bath-perfused agonist to reduce the current responses elicited by subsequent challenges with saturating concentrations of GABA. Wild-type receptors were desensitized by pre-perfused muscimol with an IC50 approximately 0.7 microm, which correlates well with the lower affinity sites for this agonist that are measured in direct binding studies. Receptors carrying the beta2 Y62S and Y62F mutations desensitized at slightly higher (2-7-fold) agonist concentrations. However, at low perfusate concentrations, the Y62S-containing receptor recovered from the desensitized state even in the continued presence of agonist. The characteristics of desensitization in the wild-type and mutant receptors lead us to suggest that the major role of the high affinity agonist-binding site(s) of the GABA(A) receptor is not to induce desensitization but rather to stabilize the desensitized state once it has been formed.  相似文献   
75.
Aberrant control of cyclin-dependent kinases (CDKs) is a central feature of the molecular pathology of cancer. Iterative structure-based design was used to optimize the ATP- competitive inhibition of CDK1 and CDK2 by O(6)-cyclohexylmethylguanines, resulting in O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine. The new inhibitor is 1,000-fold more potent than the parent compound (K(i) values for CDK1 = 9 nM and CDK2 = 6 nM versus 5,000 nM and 12,000 nM, respectively, for O(6)-cyclohexylmethylguanine). The increased potency arises primarily from the formation of two additional hydrogen bonds between the inhibitor and Asp 86 of CDK2, which facilitate optimum hydrophobic packing of the anilino group with the specificity surface of CDK2. Cellular studies with O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino) purine demonstrated inhibition of MCF-7 cell growth and target protein phosphorylation, consistent with CDK1 and CDK2 inhibition. The work represents the first successful iterative synthesis of a potent CDK inhibitor based on the structure of fully activated CDK2-cyclin A. Furthermore, the potency of O(6)-cyclohexylmethyl-2-(4'- sulfamoylanilino)purine was both predicted and fully rationalized on the basis of protein-ligand interactions.  相似文献   
76.
Dynamics of bacterial and fungal communities on decaying salt marsh grass   总被引:4,自引:0,他引:4  
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated microbial community. Here we describe the bacterial and fungal assemblages associated with two decomposition stages of Spartina alterniflora detritus in a productive southeastern U.S. salt marsh. 16S rRNA genes and 18S-to-28S internal transcribed spacer (ITS) regions were used to target the bacterial and ascomycete fungal communities, respectively, based on DNA sequence analysis of isolates and environmental clones and by using community fingerprinting based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Seven major bacterial taxa (six affiliated with the alpha-Proteobacteria and one with the Cytophagales) and four major fungal taxa were identified over five sample dates spanning 13 months. Fungal terminal restriction fragments (T-RFs) were informative at the species level; however, bacterial T-RFs frequently comprised a number of related genera. Amplicon abundances indicated that the salt marsh saprophyte communities have little-to-moderate variability spatially or with decomposition stage, but considerable variability temporally. However, the temporal variability could not be readily explained by either successional shifts or simple relationships with environmental factors. Significant correlations in abundance (both positive and negative) were found among dominant fungal and bacterial taxa that possibly indicate ecological interactions between decomposer organisms. Most associations involved one of four microbial taxa: two groups of bacteria affiliated with the alpha-Proteobacteria and two ascomycete fungi (Phaeosphaeria spartinicola and environmental isolate "4clt").  相似文献   
77.
Infections caused by yeasts belonging to the genus Candida have increased dramatically in the last decades, especially in hospital settings. Concomittantly, antimycotic resistance has emerged, as well as the appearance of non-Candida albicans isolates. To standardize in vitro antifungal susceptibility tests, the agar diffusion test was developed using disks impregnated with the antimycotic compound. Electronic recording of the inhibition zone (BIOMIC), furnishes objective values for the minimal inhibitory concentration (MIC). The fluconazole susceptibility patterns were determined for Candida species isolated from 2.139 patients seen in outpatient clinics or in health-care centers in Colombia, Ecuador and Venezuela. Candida albicans was the species most frequently isolated (62%), followed at a distance by Candida parapsilosis (11%), Candida tropicalis (8.5%), Candida glabata (3.5%) and Candida krusei (2.2%). MIC determinations showed that 88.1% of these isolates were susceptible to fluconazole, 5.1% were susceptible-dose-dependant and 6.8% resistant. An important proportion (92.1%) of the C. albicans isolates proved susceptible while resistance predominated in the remaining species. These results indicate that the BIOMIC method is rapid and simple, constituting a suitable tool for the epidemiologic surveillance of resistance in Candida species.  相似文献   
78.
Receptor-ligand interactions have traditionally been evaluated using a number of biochemical techniques including radioligand binding, photoaffinity labeling, crosslinking, and chemical modification. In modern biochemistry, these approaches have largely been superseded by site-directed mutagenesis in the study of protein function, owing in part to a better understanding of the chemical properties of oligonucleotides and to the ease with which mutant clones can now be generated. The Altered Sites II in vitro Mutagenesis System from the Promega Corporation employs oligonucleotides containing two mismatches to introduce specific nucleotide substitutions in the nucleic acid sequence of a target DNA. One of these mismatches will alter the primary sequence of a given protein, whereas the second will give rise to a silent restriction site that is used to screen for mutants. Transient transfection of tsA201 cells with mutant cDNA constructs using calcium phosphate as a carrier for plasmid DNA permits expression of recombinant receptors that can be characterized using radioligand binding assays. In this article, we focus on site-directed mutagenesis, heterologous expression in eukaryotic cells, and radioligand binding as a methodology to enable the characterization of receptor-ligand interactions.  相似文献   
79.
80.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号