首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   6篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   1篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有49条查询结果,搜索用时 31 毫秒
41.
Non-human primates (NHPs) offer valuable animal models for basic research into human diseases and for the preclinical validation of new therapeutics. Detailed in situ examination of the involved cell types using immunohistochemistry is often hampered by the lack of cross-reactive antibodies (Abs). In the current study, we have tested a large panel of monoclonal antibodies raised against human leukocyte differentiation and activation markers for cross-reactivity on cryosections of lymphoid tissue from six NHP species. In total, we have tested 130 Abs against 69 antigens expressed in tissues from one great ape species (chimpanzee/Pan troglodytes), two Old World species (rhesus macaque/Macaca mulatta and cynomolgus macaque/Macaca fascicularis), and three New World species (common marmoset/Callithrix jacchus, cotton-top tamarin/Saguinus oedipus, and owl monkey/Aotus triviogatus). We have found a large panel of cross-reactive Abs: 93 of 102 (91%) in chimpanzee, 97 of 125 (78%) in rhesus macaque, 70 of 109 (64%) in cynomolgus macaque, 69 of 116 (60%) in common marmoset, 40 of 81 (49%) in cotton-top tamarin, and 35 of 80 (44%) in owl monkey. The availability of a reliable panel of cross-reactive markers is important to gaining further insight into immunological processes in disease-affected tissues from NHP species. (J Histochem Cytochem 57:1159–1167, 2009)  相似文献   
42.
Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte.  相似文献   
43.
The Rubinstein-Taybi syndrome (RTS) is a well-defined complex of congenital malformations characterized by facial abnormalities, broad thumbs and big toes, and mental retardation. The breakpoint of two distinct reciprocal translocations occurring in patients with a clinical diagnosis of RTS was located to the same interval on chromosome 16, between the cosmids N2 and RT1, in band 16p13.3. By using two-color fluorescence in situ hybridization, the signal from RT1 was found to be missing from one chromosome 16 in 6 of 24 patients with RTS. The parents of five of these patients did not show a deletion of RT1, indicating a de novo rearrangement. RTS is caused by submicroscopic interstitial deletions within 16pl3.3 in approximately 25% of the patients. The detection of microdeletions will allow the objective confirmation of the clinical diagnosis in new patients and provides an excellent tool for the isolation of the gene causally related to the syndrome.  相似文献   
44.
Mutations in the X-linked hypoxanthine-guanine phosphoribosyl transferase gene (HPRT) result in deficiencies of HPRT enzyme activity, which may cause either a severe form of gout or Lesch-Nyhan syndrome depending on the residual enzyme activity. Mutations leading to these diseases are heterogeneous and include DNA base substitutions, DNA deletions, DNA base insertions and errors in RNA splicing. Identification of mutations has been performed at the RNA and DNA level. Sequencing genomic DNA of the HPRT gene offers the possibility of direct diagnostic analysis independent on the expression of the mature HPRT mRNA. We describe a Dutch and a Spanish family, in which the Lesch-Nyhan syndrome and a severe partial HPRT-deficient phenotype, respectively, were diagnosed. Direct sequencing of the exons coding for the HPRT gene was performed in both families. Two new exon 3 mutations have been identified. At position 16676, the normally present G was substituted by an A in the Dutch kindred (HPRTUtrecht), and led to an arginine for glycine change at residue 70. At position 16680, the G was substituted by a T in the Spanish family (HPRTMadrid); this substitutes a valine for glycine at residue 71. These new mutations are located within one of the clusters of hotspots in exon 3 of the HPRT gene in which HPRTYale and HPRTNew Haven have previously been identified.  相似文献   
45.
46.
Aspergillus oryzae was found to secrete two distinct β-glucosidases when it was grown in liquid culture on various substrates. The major form had a molecular mass of 130 kDa and was highly inhibited by glucose. The minor form, which was induced most effectively on quercetin (3,3′,4′,5,7-pentahydroxyflavone)-rich medium, represented no more than 18% of total β-glucosidase activity but exhibited a high tolerance to glucose inhibition. This highly glucose-tolerant β-glucosidase (designated HGT-BG) was purified to homogeneity by ammonium sulfate precipitation, gel filtration, and anion-exchange chromatography. HGT-BG is a monomeric protein with an apparent molecular mass of 43 kDa and a pI of 4.2 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing polyacrylamide gel electrophoresis, respectively. Using p-nitrophenyl-β-d-glucoside as the substrate, we found that the enzyme was optimally active at 50°C and pH 5.0 and had a specific activity of 1,066 μmol min−1 mg of protein−1 and a Km of 0.55 mM under these conditions. The enzyme is particularly resistant to inhibition by glucose (Ki, 1.36 M) or glucono-δ-lactone (Ki, 12.5 mM), another powerful β-glucosidase inhibitor present in wine. A comparison of the enzyme activities on various glycosidic substrates indicated that HGT-BG is a broad-specificity type of fungal β-glucosidase. It exhibits exoglucanase activity and hydrolyzes (1→3)- and (1→6)-β-glucosidic linkages most effectively. This enzyme was able to release flavor compounds, such as geraniol, nerol, and linalol, from the corresponding monoterpenyl-β-d-glucosides in a grape must (pH 2.9, 90 g of glucose liter−1). Other flavor precursors (benzyl- and 2-phenylethyl-β-d-glucosides) and prunin (4′,5,7-trihydroxyflavanone-7-glucoside), which contribute to the bitterness of citrus juices, are also substrates of the enzyme. Thus, this novel β-glucosidase is of great potential interest in wine and fruit juice processing because it releases aromatic compounds from flavorless glucosidic precursors.β-Glucoside glucohydrolases, commonly called β-glucosidases, catalyze the hydrolysis of alkyl- and aryl-β-glucosides, as well as diglucosides and oligosaccharides. These enzymes are widely used in various biotechnological processes, including the production of fuel ethanol from cellulosic agricultural residues (4, 27, 48) and the synthesis of useful β-glucosides (21, 38). In the flavor industry, β-glucosidases are also key enzymes in the enzymatic release of aromatic compounds from glucosidic precursors present in fruits and fermentating products (13, 39). Indeed, many natural flavor compounds, such as monoterpenols, C-13 norisoprenoids, and shikimate-derived compounds, accumulate in fruits as flavorless precursors linked to mono- or diglycosides and require enzymatic or acidic hydrolysis for the liberation of their fragrances (41, 45). Finally, β-glucosidases can also improve the organoleptic properties of citrus fruit juices, in which the bitterness is in part due to a glucosidic compound, naringin (4′,5,7-trihydroxyflavanone-7-rhamnoglucoside), whose hydrolysis requires, in succession, an α-rhamnosidase and a β-glucosidase (33).It is now well-established that certain monoterpenols of grapes (e.g., linalol, geraniol, nerol, citronelol, α-terpineol, and linalol oxide), which are linked to diglycosides, such as 6-O-α-l-rhamnopyranosyl-, 6-O-α-l-arabinofuranosyl-, and 6-O-β-d-apiofuranosyl-β-d-glucosides, contribute significantly to the flavor of wine (15, 44). The enzymatic hydrolysis of these compounds requires a sequential reaction; first, an α-l-rhamnosidase, an α-l-arabinofuranosidase, or a β-d-apiofuranosidase cleaves the (1→6) osidic linkage, and then, the flavor compounds are liberated from the monoglucosides by the action of a β-glucosidase (18, 19). Unlike acidic hydrolysis, enzymatic hydrolysis is highly efficient and does not result in modifications of the aromatic character (16). However, grape and yeast glucosidases exhibit limited activity on monoterpenyl-glucosides during winemaking, and a large fraction of the aromatic precursors remains unprocessed (9, 16, 35). The addition of exogenous β-glucosidase during or following fermentation has been found to be the most effective way to improve the hydrolysis of the glycoconjugated aroma compounds in order to enhance wine flavor (2, 14, 39, 40). The ideal β-glucosidase should function and be stable at a low pH value (pH 2.5 to 3.8) and should be active at a high concentration of glucose (10 to 20%) and in the presence of 10 to 15% ethanol. However, most microbial β-glucosidases are very sensitive to glucose inhibition (4, 12, 47), as well as to inhibition by glucono-δ-lactone, another powerful β-glucosidase inhibitor produced by grape-attacking fungi which can be found in wine must at concentrations up to 2 g/liter (10).The need for more suitable enzymes has led us and other workers to search for novel β-glucosidases with the desired properties. Recently, we showed that an extracellular glucose-tolerant and pH-stable β-glucosidase can be produced by Aspergillus strains (17). However, the enzyme of interest represented only a minor fraction of total β-glucosidase activity, and the major form was highly sensitive to glucose inhibition. Aspergillus oryzae appeared to be the best producer of the minor form when it was grown on quercetin (3,3′,4′,5,7-pentahydroxyflavone), a phenolic flavonoid found in plant cell walls. This paper presents further data on the production and characterization of this novel highly glucose-tolerant β-glucosidase (designated HGT-BG) purified from the extracellular culture filtrate of A. oryzae grown on quercetin.  相似文献   
47.
Several novel racemic aminotetralin derivatives have been prepared using a stereoselective aziridine ring opening reactions and were evaluated for their micro-opioid receptor binding affinity. Selectivity index towards other opioid receptors and antinociceptive activity in mice have been evaluated for the most potent derivatives.  相似文献   
48.
Wheat leaves were labelled with [l-14C]-glycerol or [l-14C]-acetateand chase experiments performed in the dark or under light.In plastids, both in the dark and under light, the results indicatea transfer of [l-14C]-glycerol from phospholipids to galactolipidsand of [l-14C]-acetate from phosphatidylcholine (PC) to monogalactosyldiacylglycerol (MGDG). They also argue for a transfer of [l-14C]-glyceroland [1-14C]-acetate from phosphatidylcholine (PC) to phosphatidylethanolamine(PE) in extraplastidial membranes. During chase experimentsin the dark, the chloroplasts accumulated higher amounts ofradioactive precursor in saturated fatty acids. In the darkor under light, oleoyl-PC labelling equally decreased in plastids,but decreased much more under light in extraplastidial membranes.Light enhanced polyunsaturated fatty acid synthesis, mainlyin MGDG, PC, PE and plastidial phosphatidylglycerol (PG). In the dark or under light, all glycerolipids were labelledwhen purified plastids were incubated with [l-14C]-acetate.Light stimulated the incorporation of the label in palmitoyl-MGDG,PG and sulfoquinovosyldiacylglycerol (SL) and also the transferof oleate from PC to MGDG. Only under light and when extraplastidialmembranes were added to isolated plastids, linoleoyl-MGDG, PGand PC were slightly labelled. These results argue for a stimulating effect of light on glycerolipidsynthesis in wheat leaf chloroplasts, on the transfer of oleatefrom PC to MGDG and on the desaturase activity. (Received March 8, 1986; Accepted September 26, 1986)  相似文献   
49.
The breakdown of organic carbon of dead Synechococcus cell walls,added to selectively filtered Lake Vechten water, was not acceleratedby protozoa. During 4 weeks of incubation at 15°C no significantdecrease of total organic carbon was observed. However, heterotrophicnanoflagel-lates (HNAN) and ciliates strongly increased theremineralization of N and especially P, from both cell wallsand cell extract. Bacterioplankton growth did not result innet P mineralization but in P uptake. P was remineralized onlyin the presence of protozoan grazers. Both HNAN and ciliatesgrazed on bacteria, with ingestion rates estimated at 27–96bad HNAN–1 h–1 and 129 bact ciliate–1 h–1respectively. Grazers increased N mineralization too, althoughN was also mineralized in the absence of protozoa. The phytoplanktoncell walls yielded less P but more N remineralization than thecell extract. Thus, protozoa can strongly accelerate cyclingof specific nutrients through plankton. Nuclepore filters werefound to cause artificial DOC release during selective filtration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号