全文获取类型
收费全文 | 753篇 |
免费 | 55篇 |
专业分类
808篇 |
出版年
2023年 | 2篇 |
2022年 | 4篇 |
2021年 | 11篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2018年 | 3篇 |
2017年 | 7篇 |
2016年 | 7篇 |
2015年 | 23篇 |
2014年 | 26篇 |
2013年 | 44篇 |
2012年 | 57篇 |
2011年 | 61篇 |
2010年 | 26篇 |
2009年 | 21篇 |
2008年 | 50篇 |
2007年 | 67篇 |
2006年 | 58篇 |
2005年 | 47篇 |
2004年 | 50篇 |
2003年 | 30篇 |
2002年 | 46篇 |
2001年 | 7篇 |
2000年 | 3篇 |
1999年 | 15篇 |
1998年 | 13篇 |
1997年 | 12篇 |
1996年 | 10篇 |
1995年 | 6篇 |
1994年 | 9篇 |
1993年 | 9篇 |
1992年 | 11篇 |
1991年 | 4篇 |
1990年 | 6篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 6篇 |
1986年 | 3篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 6篇 |
1982年 | 7篇 |
1981年 | 9篇 |
1980年 | 5篇 |
1978年 | 2篇 |
1976年 | 2篇 |
1971年 | 1篇 |
排序方式: 共有808条查询结果,搜索用时 11 毫秒
41.
Stéphanie Arnoult Marie-Christine Quillet Maryse Brancourt-Hulmel 《Bioenergy Research》2014,7(1):430-441
A wider range of Miscanthus varieties is required to develop Miscanthus clones that are suitable for bioenergy production. For this reason, breeding programs need to be initiated using knowledge regarding the genetic influence on floral biological traits. The objective of the present study was to characterize the genotypic variation in flowering and panicle architecture traits in Miscanthus by studying (i) the clone effect on these traits and (ii) the clone sensitivity to environmental conditions. The flowering traits characterized were date of panicle emergence, date of flowering onset, and interval between these two traits. The panicle architecture traits characterized were total panicle length, longest panicle raceme size, raceme number per panicle, floral density, and total flower number per panicle. Eight clones were studied in a greenhouse under four environmental conditions including two day lengths (an 8-h short day length and a natural day length) and two temperature treatments (warm and cool). Miscanthus clones showed large differences in flowering and panicle architecture traits. Moreover, day length appeared to be the most important environmental factor creating differential clone sensitivities for the panicle emergence and the onset of flowering in contrast to temperature factor for the total flower number per panicle. In addition, the behavior of the clone Sacc was in contrast with that of the other clones for most of the traits studied. This knowledge will be useful to optimize the synchronization of flowering between Miscanthus clones for more successful breeding programs. 相似文献
42.
Régine Talon Marie-Christine Montel Jean-Louis Berdague 《Enzyme and microbial technology》1996,19(8):620-622
The present paper describes the potential of Staphylococcus warneri and Staphylococcus xylosus lipases in the production of a variety of flavor esters. Both immobilized lipases produced ethyl esters from hexanoic to oleic acids with an optimum at decanoic acid. They esterified aliphatic and branched chain primary alcohols from ethanol to hexanol. Under our standard conditions, acetic, butyric, 2-methyl butyric, 3-methyl butyric, and valeric acids underwent slight esterification. 相似文献
43.
Zambrano JL Díaz Y Peña F Vizzi E Ruiz MC Michelangeli F Liprandi F Ludert JE 《Journal of virology》2008,82(12):5815-5824
Rotavirus infection of cells in culture induces major changes in Ca(2+) homeostasis. These changes include increases in plasma membrane Ca(2+) permeability, cytosolic Ca(2+) concentration, and total cell Ca(2+) content and a reduction in the amount of Ca(2+) released from intracellular pools sensitive to agonists. Various lines of evidence suggest that the nonstructural glycoprotein NSP4 and possibly the major outer capsid glycoprotein VP7 are responsible for these effects. In order to evaluate the functional roles of NSP4 and other rotavirus proteins in the changes in Ca(2+) homeostasis observed in infected cells, the expressions of NSP4, VP7, and VP4 were silenced using the short interfering RNA (siRNA) technique. The transfection of specific siRNAs resulted in a strong and specific reduction of the expression of NSP4, VP7, and VP4 and decreased the yield of new viral progeny by more than 90%. Using fura-2 loaded cells, we observed that knocking down the expression of NSP4 totally prevented the increase in Ca(2+) permeability of the plasma membrane and cytosolic Ca(2+) concentration measured in infected cells. A reduction in the levels of VP7 expression partially reduced the effect of infection on plasma membrane Ca(2+) permeability and Ca(2+) pools released by agonist (ATP). In addition, the increase of total Ca(2+) content (as measured by (45)Ca(2+) uptake) observed in infected cells was reduced to the levels in mock-infected cells when NSP4 and VP7 were silenced. Finally, when the expression of VP4 was silenced, none of the disturbances of Ca(2+) homeostasis caused by rotaviruses in infected cells were affected. These data altogether indicate that NSP4 is the main protein responsible for the changes in Ca(2+) homeostasis observed in rotavirus-infected cultured cells. Nevertheless, VP7 may contribute to these effects. 相似文献
44.
This brief review focuses on the emerging role of matrix metalloproteinase 11 (MMP-11) in cancer progression. It has recently been shown that MMP-11 is induced in adipose tissue by cancer cells as they invade their surrounding environment. MMP-11 negatively regulates adipogenesis by reducing pre-adipocyte differentiation and reversing mature adipocyte differentiation. Adipocyte dedifferentiation in turn leads to the accumulation of nonmalignant peritumoral fibroblast-like cells, which favor cancer cell survival and tumor progression. This MMP-11-mediated bi-directional cross-talk between invading cancer cells and adjacent adipocytes/pre-adipocytes highlights the central role that MMP-11 plays during tumor desmoplasia and represents a molecular link between obesity and cancer. 相似文献
45.
Homogalacturonan-derived partly methylated and/or acetylated oligogalacturonates were recovered after enzymatic hydrolysis (endo-polygalacturonase+pectin methyl esterase+side-chain degrading enzymes) of sugar beet pectin followed by anion-exchange and size exclusion chromatography. Around 90% of the GalA and 75% of the acetyl groups present in the initial sugar beet pectin were recovered as homogalacturonan-derived oligogalacturonates, the remaining GalA and acetyl belonging to rhamnogalacturonic regions. Around 50% of the acetyl groups present in sugar beet homogalacturonans were recovered as partly methylated and/or acetylated oligogalacturonates of degree of polymerisation 5 whose structures were determined by electrospray ionization ion trap mass spectrometry (ESI-IT-MSn). 2-O-acetyl- and 3-O-acetyl-GalA were detected in roughly similar amounts but 2,3-di-O-acetylation was absent. Methyl-esterified GalA residues occurred mainly upstream 2-O-acetyl GalA. Oligogalacturonates containing GalA residues that are at once methyl- and acetyl-esterified were recovered in very limited amounts. A tentative mapping of the distribution of acetyl and methyl esters within sugar beet homogalacturonans is proposed. Unsubstituted GalA residues are likely to be present in limited amounts (approximately 10% of total GalA residues), due to the fact that methyl and acetyl groups are assumed to be most often not carried by the same residues. 相似文献
46.
Thomas Lefebvre Bruno J. Gonzalez†‡ David Vaudry Laurence Desrues Antony Falluel-Morel Nicolas Aubert§ Alain Fournier¶ Marie-Christine Tonon Hubert Vaudry Hélène Castel 《Journal of neurochemistry》2009,110(3):976-989
Transient exposure to ethanol (EtOH) results in a massive neurodegeneration in the developing brain leading to behavioral and cognitive deficits observed in fetal alcohol syndrome. There is now compelling evidence that K+ channels play an important role in the control of programmed cell death. The aim of the present work was to investigate the involvement of K+ channels in the EtOH-induced cerebellar granule cell death and/or survival. At low and high concentrations, EtOH evoked membrane depolarization and hyperpolarization, respectively. Bath perfusion of EtOH (10 mM) depressed the I A (transient K+ current) potassium current whereas EtOH (400 mM) provoked a marked potentiation of the specific I K (delayed rectifier K+ current) current. Pipette dialysis with GTPγS or GDPβS did not modify the effects of EtOH (400 mM) on both membrane potential and I K current. In contrast, the reversible depolarization and slowly recovering inhibition of I A induced by EtOH (10 mM) became irreversible in the presence of GTPγS. EtOH (400 mM) induced prodeath responses whereas EtOH (10 mM) and K+ channel blockers promoted cell survival. Altogether, these results indicate that in cerebellar granule cells, EtOH mediates a dual effect on K+ currents partly involved in the control of granule cell death. 相似文献
47.
Sánchez B Champomier-Vergès MC Stuer-Lauridsen B Ruas-Madiedo P Anglade P Baraige F de los Reyes-Gavilán CG Johansen E Zagorec M Margolles A 《Applied and environmental microbiology》2007,73(21):6757-6767
Bile salts are natural detergents that facilitate the digestion and absorption of the hydrophobic components of the diet. However, their amphiphilic nature makes them very inhibitory for bacteria and strongly influences bacterial survival in the gastrointestinal tract. Adaptation to and tolerance of bile stress is therefore crucial for the persistence of bacteria in the human colonic niche. Bifidobacterium animalis subsp. lactis, a probiotic bacterium with documented health benefits, is applied largely in fermented dairy products. In this study, the effect of bile salts on proteomes of B. animalis subsp. lactis IPLA 4549 and its bile-resistant derivative B. animalis subsp. lactis 4549dOx was analyzed, leading to the identification of proteins which may represent the targets of bile salt response and adaptation in B. animalis subsp. lactis. The comparison of the wild-type and the bile-resistant strain responses allowed us to hypothesize about the resistance mechanisms acquired by the derivative resistant strain and about the bile salt response in B. animalis subsp. lactis. In addition, significant differences in the levels of metabolic end products of the bifid shunt and in the redox status of the cells were also detected, which correlate with some differences observed between the proteomes. These results indicate that adaptation and response to bile in B. animalis subsp. lactis involve several physiological mechanisms that are jointly dedicated to reduce the deleterious impact of bile on the cell's physiology. 相似文献
48.
49.
Afonso PV Ozden S Prevost MC Schmitt C Seilhean D Weksler B Couraud PO Gessain A Romero IA Ceccaldi PE 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(4):2576-2583
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies. 相似文献
50.
Occurrence of Choline and Glycine Betaine Uptake and Metabolism in the Family Rhizobiaceae and Their Roles in Osmoprotection 总被引:3,自引:0,他引:3 下载免费PDF全文
Eric Boncompagni Magne
sters Marie-Christine Poggi Daniel le Rudulier 《Applied microbiology》1999,65(5):2072-2077
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumefaciens, Mesorhizobium loti, and Mesorhizobium huakuii, demonstrating their utilization as osmoprotectants. However, both compounds were inefficient for the most salt-sensitive strains, such as Rhizobium leguminosarum (all biovars), Agrobacterium rhizogenes, Rhizobium etli, and Bradyrhizobium japonicum. Except for B. japonicum, all strains exhibit transport activity for glycine betaine and choline. When the medium osmolarity was raised, choline uptake activity was inhibited, whereas glycine betaine uptake was either increased in R. leguminosarum and S. meliloti or, more surprisingly, reduced in R. tropici, S. fredii, and M. loti. The transport of glycine betaine was increased by growing the cells in the presence of the substrate. With the exception of B. japonicum, all strains were able to use glycine betaine and choline as sole carbon and nitrogen sources. This catabolic function, reported for only a few soil bacteria, could increase competitiveness of rhizobial species in the rhizosphere. Choline dehydrogenase and betaine-aldehyde dehydrogenase activities were present in the cells of all strains with the exception of M. huakuii and B. japonicum. The main physiological role of glycine betaine in the family Rhizobiaceae seems to be as an energy source, while its contribution to osmoprotection is restricted to certain strains. 相似文献