首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   27篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   11篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   5篇
  2007年   12篇
  2006年   15篇
  2005年   11篇
  2004年   10篇
  2003年   10篇
  2002年   11篇
  2001年   19篇
  2000年   12篇
  1999年   7篇
  1998年   2篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1938年   3篇
  1936年   2篇
  1929年   1篇
排序方式: 共有244条查询结果,搜索用时 460 毫秒
161.
Theoretical and structural studies followed by the directed synthesis and in vitro biological tests lead us to novel noncovalent thrombin pseudopeptide inhibitors. We have incorporated an azapeptide scaffold into the central part of the classical tripeptide D-Phe-Pro-Arg inhibitor structure thus eliminating one stereogenic center from the molecule. A series of compounds has been designed to optimize the occupancy of the S2 pocket of thrombin. Increased hydrophobicity at P2 provides an enhanced fit into this active site S2 pocket. In the present paper, we also report on the structure of these inhibitors in solution and conformational analysis of inhibitors in the active site in order to asses the consequences of the replacement of the central alpha-CH by a nitrogen functionality. In vitro biological testing of the designed inhibitors shows that elimination of R, S stereoisomerism and restriction of conformational freedom influences the binding of inhibitors in a favorable fashion.  相似文献   
162.
Martinon F  Holler N  Richard C  Tschopp J 《FEBS letters》2000,468(2-3):134-136
Death domain containing members of the tumor necrosis factor receptor (TNFR) superfamily can induce apoptosis or cell activation. However, the mechanisms by which these opposing programs are selected remain unclear. Frequently, NF-kappaB activation conveys protection against cell death. We show that the serine/threonine kinase RIP that is required for TNF-induced NF-kappaB activation is processed by caspase-8 into a dominant-negative (DN) fragment during death receptor-induced apoptosis, thereby leading to a blockade of NF-kappaB-mediated anti-apoptotic signals. Our results suggest that cleavage of RIP is part of an amplification loop which is triggered by Fas and most likely by other death receptors.  相似文献   
163.
Caspase-8 is an initiator enzyme in the Fas-mediated pathway of which the downstream executioner caspase-3 is a physiological target. Caspases are cysteine proteases that are specific for substrates with an aspartic acid residue at the P(1) position and have an optimal recognition motif that incorporates four amino acid residues N-terminal to the cleavage site. Caspase-8 has been classified as a group III caspase member because it shows a preference for a small hydrophobic residue at the P(4) substrate position. We report the X-ray crystallographic structure of caspase-8 in complex with benzyloxycarbonyl-Asp-Glu-Val-Asp-aldehyde (Z-DEVD), a specific group II caspase inhibitor. The structure shows that the inhibitor interacts favourably with the enzyme in subsite S(4). Kinetic data reveal that Z-DEVD (K(i) 2 nM) is an almost equally potent inhibitor of caspase-8 as the specific group III inhibitor Boc-IETD-aldehyde (K(i) 1 nM). In view of this finding, the original classification of caspases into three specificity groups needs to be modified, at least for caspase-8, which tolerates small hydrophobic residues as well as the acidic residue Asp in subsite S(4). We propose that the subsite S(3) must be considered as an important specificity-determining factor.  相似文献   
164.
165.
Protein-based therapeutic approaches targeting death receptors   总被引:6,自引:0,他引:6  
Death receptors (DRs) are a growing family of transmembrane proteins that can detect the presence of specific extracellular death signals and rapidly trigger cellular destruction by apoptosis. Eight human DRs (Fas, TNF-R1, TRAMP, TRAIL-R1, TRAIL-R2, DR-6, EDA-R and NGF-R) have been identified. The best studied to date is Fas (CD95). Expression and signaling by Fas and its ligand (FasL, CD95L) is a tightly regulated process essential for key physiological functions in a variety of organs, including the maintenance of immune homeostasis. Recently, strong evidence has shown that dysregulation of Fas expression and/or signaling contributes to the pathogenesis of tissue destructive diseases such as graft-versus-host disease, toxic epidermal necrolysis, multiple sclerosis and stroke. With these new developments, strategies for modulating the function of Fas signaling have emerged and provided novel protein-based therapeutic possibilities that will be discussed herein. Selective triggering of DR-mediated apoptosis in cancer cells is an emerging approach that is being intensely investigated as a mode of cancer therapy. Local administration of Fas agonists, and more promisingly, systemic use of soluble recombinant forms of TRAIL have shown efficacy in preclinical models of the disease. Developments in this field that may have important clinical implications for the treatment of cancer are reviewed.  相似文献   
166.
Proof of concept experiments have shown that tissue factor/factor VIIa inhibitors have antithrombotic activity without enhancing bleeding propensity. Starting from lead compounds generated by a biased combinatorial approach, phenylglycine amide tissue factor/factor VIIa inhibitors with low nanomolar affinity and good selectivity against other serine proteases of the coagulation cascade were designed, using the guidance of X-ray structural analysis and molecular modelling.  相似文献   
167.
Protein kinase B is implicated in many crucial cellular processes, such as metabolism, apoptosis and cell proliferation. In contrast to Pkb(alpha) and Pkb(beta)-deficient mice, Pkb(gamma)(-/-) mice are viable, show no growth retardation and display normal glucose metabolism. However, in adult Pkb(gamma)mutant mice, brain size and weight are dramatically reduced by about 25%. In vivo magnetic resonance imaging confirmed the reduction of Pkb(gamma)(-/-) brain volumes with a proportionally smaller ventricular system. Examination of the major brain structures revealed no anatomical malformations except for a pronounced thinning of white matter fibre connections in the corpus callosum. The reduction in brain weight of Pkb(gamma)(-/-) mice is caused, at least partially, by a significant reduction in both cell size and cell number. Our results provide novel insights into the physiological role of Pkb(gamma) and suggest a crucial role in postnatal brain development.  相似文献   
168.

Background

The aim was to determine if effects from smoking on lung function measured over 11 years differ between men and women.

Methods

In a prospective population based cohort study (Swiss Study on Air Pollution and Lung Diseases in Adults) current smokers in 1991 (18 – 60 yrs) were reassessed in 2002 (n = 1792). Multiple linear regression was used to estimate effects from pack-years of cigarettes smoked to 1991 and mean packs of cigarettes smoked per day between 1991 and 2002 on change in lung volume and flows over the 11 years.

Results

In both sexes, packs smoked between assessments were related to lung function decline but pack-years smoked before 1991 were not. Mean annual decline in FEV1 was -10.4 mL(95%CI -15.3, -5.5) per pack per day between assessments in men and -13.8 mL(95%CI-19.5,-8.1) in women. Decline per pack per day between 1991 and 2002 was lower in women who smoked in 1991 but quit before 2002 compared to persistent smokers (-6.4 vs -11.6 mL, p = 0.05) but this was not seen in men (-14.3 vs -8.8 mL p = 0.49). Smoking related decline was accelerated in men and women with airway obstruction, particularly in women where decline in FEV1 was three fold higher in participants with FEV1/FVC<0.70 compared to other women (-39.4 vs -12.2 mL/yr per pack per day, p < 0.002).

Conclusion

There are differences in effects from smoking on lung function between men and women. Lung function recovers faster in women quitters than in men. Women current smokers with airway obstruction experience a greater smoking related decline in lung function than men.  相似文献   
169.
The crystal structure of a mutant form of the single-chain fragment (scFv), derived from the monoclonal anti-His tag antibody 3D5, in complex with a hexahistidine peptide has been determined at 2.7 A resolution. The peptide binds to a deep pocket formed at the interface of the variable domains of the light and the heavy chain, mainly through hydrophobic interaction to aromatic residues and hydrogen bonds to acidic residues. The antibody recognizes the C-terminal carboxylate group of the peptide as well as the main chain of the last four residues and the last three imidazole side-chains. The crystals have a solvent content of 77% (v/v) and form 70 A-wide channels that would allow the diffusion of peptides or even small proteins. The anti-His scFv crystals could thus act as a framework for the crystallization of His-tagged target proteins. Designed mutations in framework regions of the scFv lead to high-level expression of soluble protein in the periplasm of Escherichia coli. The recombinant anti-His scFv is a convenient detection tool when fused to alkaline phosphatase. When immobilized on a matrix, the antibody can be used for affinity purification of recombinant proteins carrying a very short tag of just three histidine residues, suitable for crystallization. The experimental structure is now the basis for the design of antibodies with even higher stability and affinity.  相似文献   
170.
Death receptors, such as Fas and tumor necrosis factor-related apoptosis-inducing ligand receptors, recruit Fas-associated death domain and pro-caspase-8 homodimers, which are then autoproteolytically activated. Active caspase-8 is released into the cytoplasm, where it cleaves various proteins including pro-caspase-3, resulting in apoptosis. The cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein long form (FLIP(L)), a structural homologue of caspase-8 lacking caspase activity because of several mutations in the active site, is a potent inhibitor of death receptor-induced apoptosis. FLIP(L) is proposed to block caspase-8 activity by forming a proteolytically inactive heterodimer with caspase-8. In contrast, we propose that FLIP(L)-bound caspase-8 is an active protease. Upon heterocomplex formation, a limited caspase-8 autoprocessing occurs resulting in the generation of the p43/41 and the p12 subunits. This partially processed form but also the non-cleaved FLIP(L)-caspase-8 heterocomplex are proteolytically active because they both bind synthetic substrates efficiently. Moreover, FLIP(L) expression favors receptor-interacting kinase (RIP) processing within the Fas-signaling complex. We propose that FLIP(L) inhibits caspase-8 release-dependent pro-apoptotic signals, whereas the single, membrane-restricted active site of the FLIP(L)-caspase-8 heterocomplex is proteolytically active and acts on local substrates such as RIP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号