首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   12篇
  311篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   15篇
  2014年   20篇
  2013年   12篇
  2012年   22篇
  2011年   24篇
  2010年   14篇
  2009年   12篇
  2008年   24篇
  2007年   21篇
  2006年   16篇
  2005年   17篇
  2004年   17篇
  2003年   21篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
71.
We have produced physical maps of the proximal part of Xq22, containing the Bruton's tyrosine kinase (BTK) and -galactosidase A (GLA) gene loci, using long range physical mapping techniques and yeast artificial chromosomes (YACs). These maps reveal five previously unidentified CpG islands which could indicate the presence of other genes in this region.  相似文献   
72.
The X-linked agammaglobulinaemia (XLA) gene locus has previously been mapped to Xq22 in genetic linkage studies. The DXS101 locus has shown no recombinations with XLA in the ten informative meioses investigated so far. The DXS101 sequence, recognised by the cX52.5 plasmid, is moderately repeated in Xq22. We have isolated cosmids which contain this sequence; two copies of which have been found to lie near DXS178 and XLA, and a third copy which lies near the PLP gene, distal to these loci. We have used the cosmids to generate probes which should be of use for RFLP analysis, and thus in both prenatal diagnosis and carrier testing for XLA, and in constructing a genetic map of this region. These probes will also be used to complement the genetic map in the construction of a complete physical map of Xq22.  相似文献   
73.

Background

Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown.

Methodology/Principal Findings

To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage.

Conclusions/Significance

Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates.  相似文献   
74.
Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol-induced toxicity and oxidative stress. Recently, we showed that this predominantly microsomal protein is also localized in rat hepatic mitochondria. In this report, we show that the N-terminal 30 amino acids of CYP2E1 contain a chimeric signal for bimodal targeting of the apoprotein to endoplasmic reticulum (ER) and mitochondria. We demonstrate that the cryptic mitochondrial targeting signal at sequence 21-31 of the protein is activated by cAMP-dependent phosphorylation at Ser-129. S129A mutation resulted in lower affinity for binding to cytoplasmic Hsp70, mitochondrial translocases (TOM40 and TIM44) and reduced mitochondrial import. S129A mutation, however, did not affect the extent of binding to the signal recognition particle and association with ER membrane translocator protein Sec61. Addition of saturating levels of signal recognition particle caused only a partial inhibition of CYP2E1 translation under in vitro conditions, and saturating levels of ER resulted only in partial membrane integration. cAMP enhanced the mitochondrial CYP2E1 (referred to as P450MT5) level but did not affect its level in the ER. Our results provide new insights on the mechanism of cAMP-mediated activation of a cryptic mitochondrial targeting signal and regulation of P450MT5 targeting to mitochondria.  相似文献   
75.
76.
The X-linked agammaglobulinaemia (XLA) gene locus has previously been mapped to Xq22. Genetic linkage analysis has shown tight linkage between the disease and the DXS178 locus and that DXS3 and DXS94 are the closest proximal and distal flanking markers, respectively, separated by a genetic distance of 10–12 cM. We attempted to construct a physical map of Xq22 using pulsed field gel electrophoresis (PFGE) and rare-cutting restriction enzymes in order to obtain a finite physical value for the distance between DXS3 and DXS94. However, these attempts were hampered by the large number of rare-cutting restriction enzyme sites around the DXS178 locus, indicative of the presence of CpG rich regions of DNA. We were able to construct a physical map of the sites close to DXS178 that suggests the presence of at least three, and perhaps as many as five, CpG islands. These are arranged on either side of DXS178, extending over about 550kb of genomic DNA. Each of these regions must be considered as being associated with a potential candidate gene sequence for the XLA gene and we have initiated a chromosome walk from DXS178 to the nearest of these islands.  相似文献   
77.
Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.  相似文献   
78.
79.
Production of superoxide anions by the multicomponent enzyme of human neutrophil NADPH oxidase is accompanied by extensive phosphorylation of p47(phox), one of its cytosolic components. p47(phox) is an excellent substrate for protein kinase C (PKC), but the respective contribution of each PKC isoform to this process is not clearly defined. In this study, we found that PKC isoforms known to be present in human neutrophils (PKC alpha, beta, delta, and zeta) phosphorylate p47(phox) in a time- and concentration-dependent manner, with apparent K(m) values of 10.33, 3.37, 2.37, and 2.13 microM for PKC alpha, beta II, delta, and zeta, respectively. Phosphopeptide mapping of p47(phox) showed that, as opposed to PKC zeta, PKC alpha, beta II, and delta are able to phosphorylate all the major PKC sites. The use of p47(phox) mutants identified serines 303, 304, 315, 320, 328, 359, 370, and 379 as targets of PKC alpha, beta II, and delta. Comparison of the intensity of phosphopeptides suggests that Ser 328 is the most phosphorylated serine. The ability of each PKC isoform to induce p47(phox) to associate with p22(phox) was tested by using an overlay technique; the results showed that all the PKC isoforms that were studied induce p47(phox) binding to the cytosolic fragment of p22(phox). In addition, PKC alpha, beta II, delta, and zeta were able to induce production of superoxide anions in a cell-free system using recombinant cytosolic proteins. Surprisingly, PKC zeta, which phosphorylates a subset of selective p47(phox) sites, induced stronger activation of the NADPH oxidase. Taken together, these results suggest that PKC alpha, beta II, delta, and zeta expressed in human neutrophils can individually phosphorylate p47(phox) and induce both its translocation and NADPH oxidase activation. In addition, phosphorylation of some serines could have an inhibitory effect on oxidase activation.  相似文献   
80.
Horizontal gene transfer, a process through which genomes acquire sequences from distantly related organisms, is believed to be a major source of genetic diversity in bacteria. A central question concerning the impact of gene transfer on bacterial genome evolution is the proportion of horizontally transferred sequences within genomes. Through BLAST search, we found that the genomes of two phytopathogens, Xanthomonas campestris pv. campestris and Xanthomonas axonopodis pv. citri, have close to 40% of the genes with the highest similarity to genes from phylogenetically distant organisms (non-gamma-proteobacteria). Most of these genes are found to be contiguous in the genome, forming genome islands, which may have been transferred from other organisms. Overall, the total number of genes within genome islands corresponds to almost one quarter of the entire xanthomonad genomes. Interestingly, many of the genes in these islands are functionally related to plant pathogenesis and virulence. Thus, these results suggest that horizontally transferred genes are clustered in the genome, and may facilitate fitness in new environments, as in the case of plant-bacteria interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号