首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   909篇
  免费   58篇
  2023年   6篇
  2022年   6篇
  2021年   18篇
  2020年   8篇
  2019年   15篇
  2018年   11篇
  2017年   9篇
  2016年   18篇
  2015年   37篇
  2014年   42篇
  2013年   34篇
  2012年   59篇
  2011年   59篇
  2010年   42篇
  2009年   29篇
  2008年   49篇
  2007年   44篇
  2006年   39篇
  2005年   52篇
  2004年   45篇
  2003年   47篇
  2002年   32篇
  2001年   18篇
  2000年   13篇
  1999年   24篇
  1998年   8篇
  1997年   15篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   7篇
  1992年   11篇
  1991年   8篇
  1990年   9篇
  1989年   14篇
  1988年   14篇
  1987年   11篇
  1986年   6篇
  1985年   17篇
  1983年   3篇
  1982年   6篇
  1981年   7篇
  1980年   7篇
  1979年   8篇
  1978年   5篇
  1974年   6篇
  1973年   6篇
  1972年   3篇
  1970年   4篇
  1949年   2篇
排序方式: 共有967条查询结果,搜索用时 31 毫秒
831.
Tracheal cytotoxin (TCT) was originally described as the minimal effector that was able to reproduce the cytotoxic response of Bordetella pertussis on ciliated epithelial cells. This molecule triggers pleiotropic effects such as immune stimulation or slow-wave sleep modulation. Further characterization identified TCT as a specific diaminopimelic acid (DAP)-containing muropeptide, GlcNAc-(anhydro)MurNAc-L-Ala-D-Glu-mesoDAP-D-Ala. Here, we show that the biological activity of TCT depends on Nod1, an intracellular sensor of bacterial peptidoglycan. However, Nod1-dependent detection of TCT was found to be host specific, as human Nod1 (hNod1) poorly detected TCT, whereas mouse Nod1 (mNod1) did so efficiently. More generally, hNod1 required a tripeptide (L-Ala-D-Glu-mesoDAP) for efficient sensing of peptidoglycan, whereas mNod1 detected a tetrapeptide structure (L-Ala-D-Glu-mesoDAP-D-Ala). In murine macrophages, TCT stimulated cytokine secretion and NO production through Nod1. Finally, in vivo, injection of the tetrapeptide structure in mice triggered a transient yet strong release of cytokines into the bloodstream and the maturation of macrophages, in a Nod1-dependent manner. This study thereby identifies Nod1 as the long sought after sensor of TCT in mammals.  相似文献   
832.
The gamma-proteobacterium Xanthomonadales groups two closely related genera of plant pathogens, Xanthomonas and Xylella. Whole genome sequencing and comparative analyses disclosed a high degree of identity and co-linearity of the chromosome backbone between species and strains. Differences observed are usually clustered into genomic islands, most of which are delimited by genetic mobile elements. Focus is given in this paper to describe which groups of mobile elements are found and what is the relative contribution of these elements to Xanthomonas and Xylella genomes. Insertion sequence (IS) elements have invaded the Xanthomonas genome several times, whereas Xylella is rich in phage-related regions. Also, different plasmids are found inhabiting the bacterial cells studied here. Altogether, these results suggest that the integrative elements such as phages and transposable elements as well as the episomal plasmids are important drivers of the genome evolution of this important group of plant pathogens.  相似文献   
833.
834.
The potential of natural dietary polyphenols in the treatment of vascular diseases originating from veins has been suggested in the literature. However, the mechanisms involved to explain the effects of polyphenols are not yet elucidated. Therefore, the aim of this study was to investigate the mechanisms by which polyphenols from red wine (Provinols) modulated contraction in human veins. We took advantage of a human model previously reported as a new tool for pharmacological research, using tissue-engineered techniques allowing the production of vascular media based exclusively on human smooth muscle cells. Thus human tissue-engineered vascular media (TEVM) were produced with cells originating from umbilical cord vein. TEVM were treated with either vehicle or Provinols. Results showed that treatment of TEVM with Provinols significantly potentiated the contractile responses induced by histamine and bradykinin. The potentiating effect of Provinols was not associated with an enhancement of histamine-induced increase in cytosolic calcium; rather, it implied the presence of a Ca(2+)-independent signaling pathway. Pharmacological studies indicated that action of Provinols took place at the level of phospholipase A(2)-Rho-kinase pathway and was associated with an enhancement of myosin light chain kinase activity. These results, obtained using the human TEVM, bring new insights to explain the regulation of venous contraction by polyphenols.  相似文献   
835.
836.
BAP31, a resident integral protein of the endoplasmic reticulum membrane, regulates the export of other integral membrane proteins to the downstream secretory pathway. Here we show that cell surface expression of the tetraspanins CD9 and CD81 is compromised in mouse cells from which the Bap31 gene has been deleted. CD9 and CD81 facilitate the function of multiprotein complexes at the plasma membrane, including integrins. Of note, BAP31 does not appear to influence the egress of alpha5beta1 or alpha(v)beta3 integrins to the cell surface, but in Bap31-null mouse cells, these integrins are not able to maintain cellular adhesion to the extracellular matrix in the presence of reduced serum. Consequently, Bap31-null cells are sensitive to serum starvation-induced apoptosis. Reconstitution of wild-type BAP31 into these Bap31-null cells restores integrin-mediated cell attachment and cell survival after serum stress, whereas interference with the functions of CD9, alpha5beta1, or alpha(v)beta3 by antagonizing antibodies makes BAP31 cells act similar to Bap31-null cells in these respects. Finally, in human KB epithelial cells protected from apoptosis by BCL-2, the caspase-8 cleavage product, p20 BAP31, inhibits egress of tetraspanin and integrin-mediated cell attachment. Thus, p20 BAP31 can operate upstream of BCL-2 in living cells to influence cell surface properties due to its effects on protein egress from the endoplasmic reticulum.  相似文献   
837.
BIK, a pro-apoptotic BH3-only member of the BCL-2 family, targets the membrane of the endoplasmic reticulum (ER). It is induced in human cells in response to several stress stimuli, including genotoxic stress (radiation, doxorubicin) and overexpression of E1A or p53 but not by ER stress pathways resulting from protein malfolding. BIK initiates an early release of Ca2+ from ER upstream of the activation of effector caspases. Release of the mobile ER Ca2+ stores in baby mouse kidney cells doubly deficient in BAX and BAK, on the other hand, is resistant to BIK but is sensitive to ectopic BAK. Over-expression of p53 stimulates recruitment of BAK to the ER, and both its recruitment and assembly into higher order structures is inhibited by BIK small interfering RNA. Employing small interfering RNA knockdowns, we also demonstrated that release of ER Ca2+ and mitochondrial apoptosis in human epithelial cells requires BIK and that a Ca2+-regulated target, the dynamin-related GTPase DRP1, is involved in p53-induced mitochondrial fission and release of cytochrome c to the cytosol. Endogenous cellular BIK, therefore, regulates a BAX,BAK-dependent ER pathway that contributes to mitochondrial apoptosis.  相似文献   
838.
Pulsed-field gel electrophoresis and PCR were applied for the first time to the molecular characterization of Clostridium tetani. Among five strains tested, one (CN1339) turned out to contain a mixture of two genetically different clones and two (D11 and G761) to contain bacteria differing by the presence or absence of the 74-kb plasmid harboring the tetX gene.  相似文献   
839.
Leptospira interrogans is a spirochete that is responsible for leptospirosis, a zoonotic disease. This bacterium possesses an unusual LPS that has been shown to use TLR2 instead of TLR4 for signaling in human cells. The structure of its lipid A was recently deciphered. Although its overall hexa-acylated disaccharide backbone is a classical feature of all lipid A forms, the lipid A of L. interrogans is peculiar. In this article, the functional characterization of this lipid A was studied in comparison to whole parental leptospiral LPS in terms of cell activation and use of TLR in murine and human cells. Lipid A from L. interrogans did not coagulate the Limulus hemolymph. Although leptospiral lipid A activated strongly murine RAW cells, it did not activate human monocytic cells. Results obtained from stimulation of peritoneal-elicited macrophages from genetically deficient mice for TLR2 or TLR4 clearly showed that lipid A stimulated the cells through TLR4 recognition, whereas highly purified leptospiral LPS utilized TLR2 as well as TLR4. In vitro experiments with transfected human HEK293 cells confirmed that activation by lipid A occurred only through murine TLR4-MD2 but not through human TLR4-MD2, nor murine or human TLR2. Similar studies with parental leptospiral LPS showed that TLR2/TLR1 were the predominant receptors in human cells, whereas TLR2 but also TLR4 contributed to activation in murine cells. Altogether these results highlight important differences between human and mouse specificity in terms of TLR4-MD2 recognition that may have important consequences for leptospiral LPS sensing and subsequent susceptibility to leptospirosis.  相似文献   
840.
Phosphorylation of p47(phox) is a key event in NADPH oxidase activation. We examined the ability of proinflammatory cytokines such as TNFalpha, IL-1, and G-CSF to induce this process compared with GM-CSF. Only TNF-alpha and GM-CSF induced a clear p47(phox) phosphorylation. This phosphorylation was time dependent and reached its maximum at 20 min. Two-dimensional phosphopeptide mapping of p47(phox) phosphorylated in neutrophils primed with TNF-alpha revealed partial phosphorylation of p47(phox) on the same peptide as for GM-CSF. Neutrophil incubation with TNF-alpha and subsequent addition of the chemotactic peptide fMLP resulted in more intense phosphorylation of p47(phox) sites than with each reagent alone. A neutralizing Ab against the p55 TNF receptor, contrary to a neutralizing Ab against the p75 TNF receptor, inhibited TNF-alpha-induced p47(phox) phosphorylation. Neutrophil treatment with both TNF-alpha and GM-CSF resulted in more intense phosphorylation of the same p47(phox) peptide observed with each cytokine alone, suggesting that they engaged pathways converging on common serines. This additive effect was also obtained on the priming of NADPH oxidase activity. The use of protein kinase inhibitors pointed to the involvement of a protein tyrosine kinase, but not protein kinase C. These findings show that TNF-alpha, via its p55 receptor, induces a protein tyrosine kinase-dependent selective phosphorylation of p47(phox) on specific serines. The ability of TNF-alpha and GM-CSF, two different cytokines with two different receptors to induce this specific p47(phox) phosphorylation, suggests that this event could be a common element of the priming of neutrophils by TNF-alpha and GM-CSF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号