首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   42篇
  689篇
  2023年   3篇
  2022年   14篇
  2021年   14篇
  2020年   8篇
  2019年   19篇
  2018年   11篇
  2017年   16篇
  2016年   16篇
  2015年   31篇
  2014年   34篇
  2013年   37篇
  2012年   46篇
  2011年   44篇
  2010年   28篇
  2009年   27篇
  2008年   32篇
  2007年   42篇
  2006年   27篇
  2005年   36篇
  2004年   32篇
  2003年   29篇
  2002年   29篇
  2001年   14篇
  2000年   10篇
  1999年   8篇
  1998年   6篇
  1997年   6篇
  1996年   8篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   5篇
  1977年   6篇
  1975年   5篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有689条查询结果,搜索用时 15 毫秒
201.
The influence of aromatic phenolic and non-phenolic acids on manganese peroxidase (MnP)-dependent peroxidation of linoleic acid, and oxidation of a non-phenolic lignin model compound (LMC) was studied. Phenolic compounds inhibited both the MnP-dependent lipid peroxidation (LPO) and non-phenolic LMC degradation in the system. The antioxidant activity of the aromatic compounds in the enzymatic system with MnP-dependent LPO depends on the presence of the phenolic hydroxyl groups attached to the aromatic ring structure, the methoxylation of the hydroxyl group in the ortho position in diphenolics, and number of carbon atoms in the side chain. Natural phenolic compounds inhibit the oxidation of non-phenolic lignin in the system based on MnP-mediated LPO, but do not prevent it. This result indicates that MnP-mediated LPO may play an important role in lignin degradation even in the presence of the phenolic antioxidant compounds, and supports the possibility of the involvement of LPO in the degradation of lignin in wood.  相似文献   
202.

Even after almost 30 years of Limnoperna fortunei introduction into South America, it is still unclear how the source and propagules are connected. Here, we present genetic evidence of population connectivity and gene flow of L. fortunei propagules from Asia into South America, proposing the main invasion routes into South America. To achieve that we expanded the sampling effort to cover all occurrence points of L. fortunei in South America. We sequenced the mtDNA COI gene and genotyped eight microsatellite loci (ML), and we evaluated the genetic source of the recently introduced population in Sobradinho hydroelectric power plant reservoir in Northeast Brazil. Our results revealed that China is the main genetic source of propagules for the Sobradinho population. We also found COI haplotypes and ML genotypes unique to South American populations, demonstrating a bridgehead effect likely caused by local mutation, adaptation, and admixture patterns that are maintained by high levels of gene flow among them. However, two genetic barriers were also detected. We concluded that L. fortunei is a well-established invader and is still rapidly expanding in Brazil, and the Amazon hydrographic basin is under an alarming threat of invasion.

  相似文献   
203.
204.
Kv2.1 is a potassium channel α-subunit abundantly expressed throughout the brain. It is a main component of delayed rectifier current (I(K)) in several neuronal types and a regulator of excitability during high-frequency firing. Here we identify AMIGO (amphoterin-induced gene and ORF), a neuronal adhesion protein with leucine-rich repeat and immunoglobin domains, as an integral part of the Kv2.1 channel complex. AMIGO shows extensive spatial and temporal colocalization and association with Kv2.1 in the mouse brain. The colocalization of AMIGO and Kv2.1 is retained even during stimulus-induced changes in Kv2.1 localization. AMIGO increases Kv2.1 conductance in a voltage-dependent manner in HEK cells. Accordingly, inhibition of endogenous AMIGO suppresses neuronal I(K) at negative membrane voltages. In conclusion, our data indicate AMIGO as a function-modulating auxiliary subunit for Kv2.1 and thus provide new insights into regulation of neuronal excitability.  相似文献   
205.
206.
Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrb(sl) mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome.  相似文献   
207.
Komiya T  Fujita S  Watanabe K 《PloS one》2011,6(2):e17430
Divergent natural selection rooted in differential resource use can generate and maintain intraspecific eco-morphological divergence (i.e., resource polymorphism), ultimately leading to population splitting and speciation. Differing bottom environments create lake habitats with different benthos communities, which may cause selection in benthivorous fishes. Here, we document the nature of eco-morphological and genetic divergence among local populations of the Japanese gudgeon Sarcocheilichthys (Cyprinidae), which inhabits contrasting habitats in the littoral zones (rocky vs. pebbly habitats) in Lake Biwa, a representative ancient lake in East Asia. Eco-morphological analyses revealed that Sarcocheilichthys variegatus microoculus from rocky and pebbly zones differed in morphology and diet, and that populations from rocky environments had longer heads and deeper bodies, which are expected to be advantageous for capturing cryptic and/or attached prey in structurally complex, rocky habitats. Sarcocheilichthys biwaensis, a rock-dwelling specialist, exhibited similar morphologies to the sympatric congener, S. v. microoculus, except for body/fin coloration. Genetic analyses based on mitochondrial and nuclear microsatellite DNA data revealed no clear genetic differentiation among local populations within/between the gudgeon species. Although the morphogenetic factors that contribute to morphological divergence remain unclear, our results suggest that the gudgeon populations in Lake Biwa show a state of resource polymorphism associated with differences in the bottom environment. This is a novel example of resource polymorphism in fish within an Asian ancient lake, emphasizing the importance and generality of feeding adaptation as an evolutionary mechanism that generates morphological diversification.  相似文献   
208.
Habitat use by birds may be related to single or interacting effects of habitat characteristics, food resources and predators, but little is known about factors affecting habitat use by wetland species in boreal ecosystems. We surveyed brood‐rearing females and ducklings of four common boreal duck species to assess the effects of habitat structure and food resources on the use of wetlands by brood‐rearing ducks. Although wetland use by duck broods was related to habitat structure and food abundance, their relative importance varied among duck species. For the Common Goldeneye Bucephala clangula, a diving duck, aquatic invertebrates and large emerging insects were the most important factors associated with wetland use. Common Teal Anas crecca broods were observed more often on wetlands with greater Dipteran emergence, whereas in Mallard Anas platyrhynchos both habitat structure and large emerging insects were important. The occurrence of Eurasian Wigeon Anas penelope broods was related to emerging Diptera and habitat structure but the associations were not strong. The varying habitat and food requirements of common duck species could influence the success of wetland management programmes, and consideration of these factors may be particularly important for initiatives aimed at harvested species or species of conservation concern.  相似文献   
209.
Programmed death 1 (PD-1) is a potent inhibitor of T cell responses. PD-1 abrogates activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism remains unclear. We determined that during T cell receptor (TCR)/CD3- and CD28-mediated stimulation, PTEN is phosphorylated by casein kinase 2 (CK2) in the Ser380-Thr382-Thr383 cluster within the C-terminal regulatory domain, which stabilizes PTEN, resulting in increased protein abundance but suppressed PTEN phosphatase activity. PD-1 inhibited the stabilizing phosphorylation of the Ser380-Thr382-Thr383 cluster within the C-terminal domain of PTEN, thereby resulting in ubiquitin-dependent degradation and diminished abundance of PTEN protein but increased PTEN phosphatase activity. These effects on PTEN were secondary to PD-1-mediated inhibition of CK2 and were recapitulated by pharmacologic inhibition of CK2 during TCR/CD3- and CD28-mediated stimulation without PD-1. Furthermore, PD-1-mediated diminished abundance of PTEN was reversed by inhibition of ubiquitin-dependent proteasomal degradation. Our results identify CK2 as a new target of PD-1 and reveal an unexpected mechanism by which PD-1 decreases PTEN protein expression while increasing PTEN activity, thereby inhibiting the PI3K/Akt signaling axis.  相似文献   
210.

Background and Aims

Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (gs) at the expense of lowering CO2 uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when gs declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than gs, an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO2 concentration (ca).

Methods

Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated ca and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂gs)/(∂E/∂gs) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO2 concentration (ci) were examined using A/ci curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO2 Enrichment experiment (North Carolina, USA).

Key Results

Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated ca increased η and λ, and at given ca and needle age-class, the two quantities varied among needles in an approximately complementary manner.

Conclusions

The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in predicting how increasing ca influences ecosystem water use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号