首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44670篇
  免费   16965篇
  国内免费   10篇
  61645篇
  2023年   105篇
  2022年   262篇
  2021年   738篇
  2020年   2358篇
  2019年   3935篇
  2018年   4081篇
  2017年   4341篇
  2016年   4572篇
  2015年   4871篇
  2014年   4644篇
  2013年   5231篇
  2012年   3282篇
  2011年   2933篇
  2010年   3976篇
  2009年   2605篇
  2008年   1885篇
  2007年   1427篇
  2006年   1334篇
  2005年   1349篇
  2004年   1272篇
  2003年   1267篇
  2002年   1171篇
  2001年   401篇
  2000年   308篇
  1999年   325篇
  1998年   286篇
  1997年   190篇
  1996年   182篇
  1995年   189篇
  1994年   149篇
  1993年   170篇
  1992年   158篇
  1991年   110篇
  1990年   113篇
  1989年   98篇
  1988年   92篇
  1987年   73篇
  1986年   88篇
  1985年   73篇
  1984年   106篇
  1983年   70篇
  1982年   97篇
  1981年   74篇
  1980年   69篇
  1979年   56篇
  1978年   49篇
  1977年   61篇
  1976年   53篇
  1974年   41篇
  1973年   38篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
ABSTRACT

This article reviews the role of microbial biofilms in infection, and the antimicrobial chemical diversity of marine macroalgae and their associated microbiomes. Antimicrobial resistance (AMR) represents one of the major health threats faced by humanity over the next few years. To prevent a global epidemic of antimicrobial-resistant infections, the discovery of new antimicrobials and antibiotics, better anti-infection strategies and diagnostics, and changes to our current use of antibiotics have all become of paramount importance. Numerous studies investigating the bioactivities of seaweed extracts as well as their secondary and primary metabolites highlight the vast biochemical diversity of seaweeds, with new modes of action making them ideal sources for the discovery of novel antimicrobial bioactive compounds of pharmaceutical interest. In recent years, researchers have focused on characterizing the endophytic and epiphytic microbiomes of various algal species in an attempt to elucidate host-microbe interactions as well as to understand the function of microbial communities. Although environmental and host-associated factors crucially shape microbial composition, microbial mutualistic and obligate symbionts are often found to play a fundamental role in regulating many aspects of host fitness involving ecophysiology and metabolism. In particular, algal ‘core’ epiphytic bacterial communities play an important role in the protection of surfaces from biofouling, pathogens and grazers through the production of bioactive metabolites. Together, marine macroalgae and their associated microbiomes represent unique biological systems offering great potential for the isolation and identification of novel compounds and strategies to counteract the rise and dissemination of AMR.  相似文献   
112.
113.
114.
115.
Species distribution modeling has been widely used to address questions related to ecology, biogeography and species conservation on global and regional scales. Here, we study palms (Arecaceae) in a tropical biodiversity hotspot (Thailand) using species distribution modeling to assess range‐limiting factors and estimate distribution and diversity patterns based on a comprehensive compilation of occurrence records. We focused on palms as a model group due to their key‐stone importance for ecosystem functioning and socio‐economics. Different combinations of climatic, non‐climatic environmental and spatial predictors were used. The most accurate models as indicated by the ‘area under the receiver operating characteristic curve’ (AUC) statistic were those that combined all predictors. The four strongest single predictors of palm species distributions were, in decreasing order of importance, 1) latitude, 2) precipitation of driest quarter, 3) annual precipitation, and 4) minimum temperature of the coldest month, suggesting rainfall patterns and latitudinal spatial constraints as the main range determinants. Overlaying the predicted distributions revealed that potential palm hotspots are situated in the provinces of Satun and Yala in southern Thailand where vast areas remain relatively open to the discovery of new palm records and perhaps even new species.  相似文献   
116.
The drug cisplatin is widely used to treat a number of tumor types. However, resistance to the drug, which remains poorly understood, limits its usefulness. Previous work using Dictyostelium discoideum as a model for studying drug resistance showed that mutants lacking sphingosine-1-phosphate (S-1-P) lyase, the enzyme that degrades S-1-P, had increased resistance to cisplatin, whereas mutants overexpressing the enzyme were more sensitive to the drug. S-1-P is synthesized from sphingosine and ATP by the enzyme sphingosine kinase. We have identified two sphingosine kinase genes in D. discoideum--sgkA and sgkB--that are homologous to those of other species. The biochemical properties of the SgkA and SgkB enzymes suggest that they are the equivalent of the human Sphk1 and Sphk2 enzymes, respectively. Disruption of the kinases by homologous recombination (both single and double mutants) or overexpression of the sgkA gene resulted in altered growth rates and altered response to cisplatin. The null mutants showed increased sensitivity to cisplatin, whereas mutants overexpressing the sphingosine kinase resulted in increased resistance compared to the parental cells. The results indicate that both the SgkA and the SgkB enzymes function in regulating cisplatin sensitivity. The increase in sensitivity of the sphingosine kinase-null mutants was reversed by the addition of S-1-P, and the increased resistance of the sphingosine kinase overexpressor mutant was reversed by the inhibitor N,N-dimethylsphingosine. Parallel changes in sensitivity of the null mutants are seen with the platinum-based drug carboplatin but not with doxorubicin, 5-fluorouracil, and etoposide. This pattern of specificity is similar to that observed with the S-1-P lyase mutants and should be useful in designing therapeutic schemes involving more than one drug. This study identifies the sphingosine kinases as new drug targets for modulating the sensitivity to platinum-based drugs.  相似文献   
117.
A recombinant dog gastric lipase with therapeutic potential for the treatment of exocrine pancreatic insufficiency was expressed in transgenic tobacco plants. We targeted the protein using two different signal sequences for either vacuolar retention or secretion. In both cases, an active glycosylated recombinant protein was obtained. The recombinant enzymes and the native enzyme displayed similar properties including acid resistance and acidic optimum pH. The proteolytic maturation and the specific activity of the recombinant proteins, however, were found to be dependent on subcellular compartmentalization. Expression levels of recombinant dog gastric lipase were about 5% and 7% of acid extractable plant proteins for vacuolar retention and secretion respectively. This expression system already has allowed the production of tens of grams of purified lipase through open-field culture of transgenic tobacco plants.  相似文献   
118.
An Arabidopsis thaliana mutant, esa1, that shows enhanced susceptibility to the necrotrophic pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina, but has wild-type levels of resistance to the biotrophic pathogens Pseudomonas syringae pv. tomato and Peronospora parasitica. The enhanced susceptibility towards necrotrophic pathogens correlated with a delayed induction of phytoalexin accumulation and delayed induction of the plant defensin gene PDF1.2 upon inoculation with pathogens. Two reactive oxygen generating compounds, paraquat and acifluorfen, were found to cause induction of both phytoalexin accumulation and PDF1.2 expression in wild-type plants, but this induction was almost completely abolished in esa1. This finding suggests that esa1 may somehow be involved in transduction of signals generated by reactive oxygen species.  相似文献   
119.
The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate‐Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell‐wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full‐length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/ .  相似文献   
120.
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from “pyophage”, a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号