首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   16篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   5篇
  2018年   8篇
  2017年   6篇
  2016年   8篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   15篇
  2011年   22篇
  2010年   10篇
  2009年   10篇
  2008年   12篇
  2007年   12篇
  2006年   15篇
  2005年   4篇
  2004年   9篇
  2003年   9篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1968年   1篇
  1958年   1篇
排序方式: 共有231条查询结果,搜索用时 437 毫秒
121.
Facial expression of emotions is a powerful vehicle for communicating information about others’ emotional states and it normally induces facial mimicry in the observers. The aim of this study was to investigate if early aversive experiences could interfere with emotion recognition, facial mimicry, and with the autonomic regulation of social behaviors. We conducted a facial emotion recognition task in a group of “street-boys” and in an age-matched control group. We recorded facial electromyography (EMG), a marker of facial mimicry, and respiratory sinus arrhythmia (RSA), an index of the recruitment of autonomic system promoting social behaviors and predisposition, in response to the observation of facial expressions of emotions. Results showed an over-attribution of anger, and reduced EMG responses during the observation of both positive and negative expressions only among street-boys. Street-boys also showed lower RSA after observation of facial expressions and ineffective RSA suppression during presentation of non-threatening expressions. Our findings suggest that early aversive experiences alter not only emotion recognition but also facial mimicry of emotions. These deficits affect the autonomic regulation of social behaviors inducing lower social predisposition after the visualization of facial expressions and an ineffective recruitment of defensive behavior in response to non-threatening expressions.  相似文献   
122.
123.

Aims

A high consumption of fructose leads not only to peripheral changes in insulin sensitivity and vascular function, but also to central changes in several brain regions. Given the role of the endogenous cannabinoid system in the control of energy intake, we undertook a pilot study to determine whether a high fructose diet produced changes in brain CB1 receptor functionality.

Main methods

Male rats given access ad libitum to normal chow were given either water, glucose or fructose solutions to drink. CB1 receptor functionality was measured autoradiographically as the increase in [35S]GTPγS binding produced by the agonist CP55,940.

Key findings

Seven regions were investigated: the prefrontal cortex, caudate–putamen, hippocampal CA1–CA3, dentate gyrus, amygdala, and dorsomedial and ventromedial hypothalami. Two-way robust Wilcoxon analyses for each brain region indicated that the dietary treatment did not produce significant main effects upon agonist-stimulated [35S]GTPγS binding in any of the regions, in contrast to a significant main effect upon both leptin and adiponectin levels in the blood. However, a MANCOVA of the data controlling for leptin and adiponectin as co-variables identified a significant effect of glucose and fructose treatment for five weeks upon the [35S]GTPγS response in the ventromedial hypothalamus, a region of importance for regulation of appetite.

Significance

It is concluded from this pilot study that palatable solutions do not produce overt changes in brain CB1 receptor functionality, although subtle changes in discrete brain regions may occur.  相似文献   
124.
Lipid A is the lipophilic region of lipopolysaccharides and lipooligosaccharides, the major components of the outer leaflet of most part of Gram-negative bacteria. Some lipid As are very promising immunoadjuvants. They are obtained by extraction from bacterial cells or through total chemical synthesis. A novel, semisynthetic approach to lipid As is ongoing in our laboratories, relying upon the chemical modification of a natural lipid A scaffold for the fast obtainment of several other lipid As and derivatives thereof. The first requisite for this strategy is to have this scaffold available in large quantities through a scalable process. Here, we present an optimized fed-batch fermentation procedure for the gram-scale production of lipid A from Escherichia coli K4 and a suitable phenol-free protocol for its purification. A study for regioselective de-O-phosphorylation reaction was then performed to afford pure monophosphoryl lipid A with an attenuated endotoxic activity, as evaluated by cytokine production in human monocytic cell line THP-1 in vitro. The reported method for the large-scale obtainment of monophoshoryl lipid A from the fed-batch fermentation broth of a recombinant strain of E. coli may permit the access to novel semisynthetic lipid A immunoadjuvant candidates.  相似文献   
125.
Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication.  相似文献   
126.
Tegumentary Leishmaniasis (TL) is endemic in Latin America, and Brazil contributes approximately 20 thousand cases per year. The pathogenesis of TL, however, is still not fully understood. Clinical manifestations vary from cutaneous leishmaniasis (CL) to more severe outcomes, such as disseminated leishmaniasis (DL), mucosal leishmaniasis (ML) and diffuse cutaneous leishmaniasis (DCL). Many factors have been associated with the severity of the disease and the development of lesions. Recent studies have reported that the presence of Leishmania RNA virus 1 infecting Leishmania (Leishmania RNA virus 1, LRV1) is an important factor associated with the severity of ML in experimental animal models. In the present study, 156 patients who attended Rondonia''s Hospital of Tropical Medicine with both leishmaniasis clinical diagnoses (109 CL; 38 ML; 5 CL+ML; 3 DL and 1 DCL) and molecular diagnoses were investigated. The clinical diagnosis were confirmed by PCR by targeting hsp70 and kDNA DNA sequences and the species causing the infection were determined by HSP70 PCR-RFPL. The presence of LVR1 was tested by RT-PCR. Five Leishmania species were detected: 121 (77.6%) samples were positive for Leishmania (Viannia) braziliensis, 18 (11.5%) were positive for Leishmania (V.) guyanensis, 3 (1.8%) for Leishmania (V.) lainsoni, 2 (1.3%) for Leishmania (Leishmania) amazonensis and 2 (1.3%) for Leishmania (V.) shawi. Six (3.9%) samples were positive for Leishmania sp. but the species could not be determined, and 4 (2.6%) samples were suggestive of mixed infection by L. (V.) braziliensis and L. (V.) guyanensis. The virus was detected in L. braziliensis (N = 54), L. guyanensis (N = 5), L. amazonensis (N = 2), L. lainsoni (N = 1) and inconclusive samples (N = 6). Patients presenting with CL+ML, DL and DCL were excluded from further analysis. Association between the presence of the virus and the disease outcome were tested among the remaining 147 patients (CL = 109 and ML = 38). Of them, 71.1% (n = 27) mucosal lesions were positive for LRV1, and 28.9% (n = 11) were negative. In cutaneous lesions, 36.7% (n = 40) were positive and 63.3% (n = 69) were negative for LRV1. The ratio P(ML|LRV1+)/P(ML|LRV1-) was 2.93 (CI95% 1.57…5.46; p<0.001), thus corroborating the hypothesis of the association between LRV1 and the occurrence of mucosal leishmaniasis, as previously described in animal models; it also indicates that LRV1 is not the only factor contributing to the disease outcome.  相似文献   
127.
The genus Rumex (Polygonaceae) is distributed worldwide and the different species belonging to it are used in traditional medicine. The present study aimed at the evaluation of the phytochemical profile and the biochemical properties of methanolic extracts from different parts (roots, stems, and leaves) of Rumex roseus, a wild local Tunisian plant traditionally used as food. The phytochemical analysis on the extracts was performed using standard colorimetric procedures, HPLC-DAD, and HPLC-DAD-ESI-MS; then, several in vitro cell-free assays have been used to estimate their antioxidant/free radical scavenging capability (TAC-PM, DPPH, TEAC, FRAP, ORAC, SOD-like activity, and HOCl-induced albumin degradation). Additionally, anti-inflammatory effect of these extracts was evaluated in an in vitro model of acute intestinal inflammation in differentiated Caco-2 cells. The results showed that the methanolic extracts from stems and, especially, leaves contain substantial amounts of flavones (apigenin and luteolin, together with their derivatives), while the extract from roots is characterized by the presence of tannins and quinic acid derivatives. All the extracts appeared endowed with excellent antioxidant/free radical scavenging properties. In particular, the extract from roots was characterized by a remarkable activity, probably due to its different and peculiar polyphenolic composition. Furthermore, both Rumex roseus roots and stems extracts demonstrated an anti-inflammatory effect in intestinal epithelial cells, reducing TNF-α-induced gene expression of IL-6 and IL-8. In conclusion, R. roseus methanolic extracts have shown to be potential sources of bioactive compounds to be used in the prevention and treatment of pathologies related to oxidative stress and inflammation.  相似文献   
128.
Molecular phylogenetic analyses conducted over the past 15 yr have consistently had difficulties resolving relationships among the cetacean species in the subfamily Delphininae. In addition, paraphyly of the genera Tursiops and Stenella in these molecular phylogenies has been a recurrent problem since the first appearance of such a phylogeny in 1999, suggesting that these genera do not accurately reflect the evolutionary relationships of the species they contain. Morphological analyses have not resolved the issues. The genera in Delphininae originated in the 19th Century on questionable morphological grounds. The species were nearly all originally described in the genus Delphinus of Linnaeus. Recent molecular phylogenies based on various mitochondrial and nuclear DNA markers have suggested a wide range of possible relationships among these taxa, and several authors have suggested synonymizing all the taxa (Lagenodelphis, Stenella, Sousa, and Tursiops) under Delphinus. Until molecular and/or morphological analyses adequately sort out relationships in this very recently radiated group, one possible solution indeed would be to merge all the delphinine genera with Delphinus. Implications of such a move and alternatives are discussed.
Editor's Note: Papers from past Norris Award winners have primarily been a revised or reduced version of the actual presentation given as a plenary talk at the biennial conference. Dr. Perrin requested being allowed to take a topic from his presentation and expand on it to present a set of ideas in the form of an essay that could pass the rigors of the peer‐review process. As a result, this Norris Award paper has undergone peer‐review and has taken longer than usual for a Norris Award paper to appear in the journal following its presentation at the biennial conference. It also has co‐authors, with varying opinions on the issues discussed in the essay, to cover appropriately and more thoroughly those components of the paper that required additional expertise. I believe this approach has produced an excellent, thought‐provoking essay and is an approach that should be available to future Norris Award winners if they so choose to take it. Since this essay is meant to elicit dialogue, comments are welcome and will be considered for publication in Letters to the Editor.
  相似文献   
129.
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease. Although genetic factors confer susceptibility to the disease, only 15 % of the genetic contribution has been identified. TRAF3IP2 gene, associated with susceptibility to psoriatic arthritis and psoriasis, encodes for Act1, a negative regulator of adaptive immunity and a positive signaling adaptor in IL-17-mediated immune responses. The aim of this study was to assess the role of TRAF3IP2 gene variability in SLE susceptibility and disease phenotype in an Italian population. Two hundred thirty-nine consecutive SLE patients were enrolled. Study protocol included complete physical examination; the clinical and laboratory data were collected. Two hundred seventy-eight age- and ethnicity-matched healthy subjects served as controls. TRAF3IP2 polymorphisms (rs33980500, rs13190932, and rs13193677) were analyzed in both cases and controls. Genotype analysis was performed by allelic discrimination assays. A case–control association study and a genotype–phenotype correlation were performed. The rs33980500 and rs13193677 resulted significantly associated with SLE susceptibility (P?=?0.021, odds ratio (OR)?=?1.71, and P?=?0.046, OR?=?1.73, respectively). All three TRAF3IP2 single nucleotide polymorphisms resulted associated with the development of pericarditis; in particular, rs33980500 showed the strongest association (P?=?0.002, OR 2.59). This association was further highlighted by binary logistic regression analysis. In conclusion, our data show for the first time the contribution of TRAF3IP2 genetic variability in SLE susceptibility, providing further suggestions that common variation in genes that function in the adaptive and innate arms of the immune system are important in establishing SLE risk. Our study also shows that this gene may affect disease phenotype and, particularly, the occurrence of pericarditis.  相似文献   
130.
The gamma subunit of the ATP synthase F(1) sector rotates at the center of the alpha(3)beta(3) hexamer during ATP hydrolysis. A gold bead (40-200 nm diameter) was attached to the gamma subunit of Escherichia coli F(1), and then its ATP hydrolysis-dependent rotation was studied. The rotation speeds were variable, showing stochastic fluctuation. The high-speed rates of 40- and 60-nm beads were essentially similar: 721 and 671 rps (revolutions/s), respectively. The average rate of 60-nm beads was 381 rps, which is approximately 13-fold faster than that expected from the steady-state ATPase turnover number. These results indicate that the F(1) sector rotates much faster than expected from the bulk of ATPase activity, and that approximately 10% of the F(1) molecules are active on the millisecond time scale. Furthermore, the real ATP turnover number (number of ATP molecules converted to ADP and phosphate/s), as a single molecule, is variable during a short period. The epsilon subunit inhibited rotation and ATPase, whereas epsilon fused through its carboxyl terminus to cytochrome b(562) showed no effect. The epsilon subunit significantly increased the pausing time during rotation. Stochastic fluctuation of catalysis may be a general property of an enzyme, although its understanding requires combining studies of steady-state kinetics and single molecule observation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号