首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   6篇
  100篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2017年   3篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   11篇
  2012年   13篇
  2011年   9篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   2篇
  2005年   10篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1996年   3篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有100条查询结果,搜索用时 0 毫秒
51.
The immunomodulatory effect of Siegesbeckia glabrescens extract-supplementation diets on innate immune response and disease resistance of kelp grouper, Epinephelus bruneus against Vibrio parahaemolyticus at weeks 1, 2, and 4 is reported. The serum lysozyme activity was significantly enhanced with any enriched diet from weeks 1-4 when compared to control diet (0%). The alternative complement haemolytic activities significantly were enhanced with all enriched diets on weeks 2 and 4 whereas the cellular reactive oxygen species (ROS) was significantly enhanced only with 1.0% and 2.0% diets. The reactive nitrogen intermediate (RNI) value was significantly enhanced with any enriched diet on weeks 2 and 4, but on first week it did not differ from control. The myeloperoxidase (MPO) production significantly increased with 1.0% and 2.0% diets from second week onwards; with other enriched diets the increase manifested on fourth week; but during first week it did not vary from that of the control with any enriched diet. The protection in terms of cumulative mortality was the least being 25% and 20% when fed with 1.0% and 2.0% diets. The present results indicate that feeding kelp grouper with S. glabrescens extract enriched diet at 1.0% and 2.0% levels significantly enhance the immunological parameters, increase the disease resistance and minimize the cumulative mortality in E. bruneus against V. parahaemolyticus.  相似文献   
52.
Mitochondria are indispensable for bioenergetics and for the regulation of physiological/signaling events in cellular life. Although TNF-alpha-induced oxidative stress and mitochondrial dysfunction are evident in several pathophysiological states, the molecular mechanisms coupled with impaired cardiac function and its potential reversal by drugs such as Tempol or apocyanin have not yet been explored. Here, we hypothesize that TNF-alpha-induced oxidative stress compromises cardiac function by altering the mitochondrial redox state and the membrane permeability transition pore (MPTP) opening, thereby causing mitochondrial dysfunction. We measured the redox states in the cytosol and mitochondria of the heart to understand the mechanisms related to the MPTP and the antioxidant defense system. Our studies demonstrate that TNF-alpha-induced oxidative stress alters redox homeostasis by impairing the MPTP proteins adenine nucleotide translocator and voltage-dependent anion channel, thereby resulting in the pore opening, causing uncontrolled transport of substances to alter mitochondrial pH, and subsequently leading to dysfunction of mitochondria and attenuated cardiac function. Interestingly, we show that the supplementation of Tempol along with TNF-alpha restores mitochondrial and cardiac function.  相似文献   
53.
54.
Three-dimensional structures of the fragile X triplet repeats (GCC)n and (GGC)n are derived by using one- dimensional/two-dimensional NMR. Under a wide range of solution conditions (10-150 mM NaCl,pH6-7)(GCC)5-7 strands form exclusively slipped hairpins with a 3' overhanging C. The slipped hairpins of (GCC)n strands show the following structural characteristics: (i) maximization of Watson-Crick G.C pairs; (ii) formation of C.C mispairs at the CpG steps in the stem; (iii) C2'-endo, anti conformations for all the nucleotides. The ability of (GCC)n strands to form hairpin structures more readily than complementary (GGC)n strands suggests preferential slippage during replication and subsequent expansion of the (GCC)n strands. In addition, the C.C. mispairs at the CpG site of (GCC)n hairpins account for their exceptional substrate efficiencies for human methyltransferase. Gel electrophoresis data show that (GGC)n strands form both hairpin and mismatched duplex structures in 10-150 mM NaCl (ph 6-7) for n < 10, but for n > or + 11 hairpin structures are exclusively present. However, (GGC)n strands remain predominantly in the duplex state for n=4-11 under NMR solution conditions, which require DNA concentrations 100- to 1000-fold higher than in gel electrophoresis. NMR analyses of [(GGC)n]2 duplexes for n=4-6 show the presence of Watson-Crick G.C and mismatched G anti G syn pairs. The mismatches adjacent to the CpG step introduce local structural flexibility in these duplexes. Similar structural properties are also expected in the stem of the hairpins formed by (GGC)n strands.  相似文献   
55.
Identification of signalling cascades involved in cardiomyogenesis is crucial for optimising the generation of cardiomyocytes from embryonic stem cells (ES cells) (in vitro). We used a transgenic ES cell lineage expressing enhanced green fluorescent protein (EGFP) under the control of the alpha-myosin heavy chain (alpha-MHC) promoter (palphaMHC-EGFP) to investigate the effects of 33 small molecules interfering with several signalling cascades on cardiomyogenesis. Interestingly, the L-Type Ca2+ channel blocker Verapamil as well as Cyclosporin, an inhibitor of the protein phosphatase 2B, exerted the most striking pro-cardiomyogenic effect. Forskolin (adenylate cyclase stimulator) exerted the most striking anti-cardiomyogenic effect. The cardiomyogenic effect of Cyclosporin and Verapamil correlated with an expression of early cardiac markers Nkx2.5 and GATA4.Compared to the effects on late developmental stage embryoid bodies (EBs) stimulation of early developmental stage EBs (1-day old) with Verapamil or Cyclosporin for 48 h resulted in a potent cardiomyogenic effect. Accordingly, enhanced expression of alpha-MHC mRNA and EGFP mRNA was observed after stimulation of the early developmental stage EBs for 48 h. No expression of alpha-smooth muscle actin or platelet endothelial cell adhesion molecule-1 (PECM-1) as well as of neuronal genes (Nestin, Neurofilament H) has been observed demonstrating a preferentially pro-cardiomyogenic effect by both molecules.  相似文献   
56.
DNA repeats in the human genome   总被引:5,自引:1,他引:5  
  相似文献   
57.
In a stressful situation, greater short-nosed fruit bats (Cynopterus sphinx) emit audible vocalization either to warn or to inform conspecifics. We examined the effect of distress calls on bats emitting the call as well as the bats receiving the distress signal through analysis of the hypothalamic-pituitary-adrenal axis and catacholaminargic systems. We measured the levels of neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)] and stress hormones [(adrenocorticotropic hormone (ACTH) and corticosterone (CORT)]. Our results showed that distress call emission elevated the level of ACTH and CORT, as well as 5-HT, DA and NE in the amygdala, for both the call emitting bat and the responding bat. Subsequently, we observed increased activity of glucocorticoid receptor and its steroid receptor co-activator (SRC-1). An expression of SRC-1 was up-regulated in the distress call emitter only, whereas it was at a similar level in both the call responder and silent bats. These findings suggest that bats emitting distress calls and also bats responding to such calls have similar neurotransmitter expression patterns, and may react similarly in response to stress.  相似文献   
58.
59.
Metabolic syndrome is defined by a cluster of different metabolic risk factors that include overall and central obesity, elevated fasting glucose levels, dyslipidemia, hypertension, and intimal atherogenesis. Metabolic syndrome leads to increased risk for the development of type 2 diabetes and cardiovascular disease (e.g., heart disease and stroke). The exacerbated progression of metabolic syndrome to cardiovascular disease has lead to intense study of the physiological ramifications of metabolic syndrome on the blood vasculature. These studies have particularly focused on the signaling and architectural alterations that manifest in hypertension and atherosclerosis. However, despite the overlap of metabolic syndrome pathology with lymphatic function, tangent effects on the lymphatic system have not been extensively documented. In this review, we discuss the current status of metabolic syndrome and provide evidence for, and the remaining challenges in studying, the connections among the lymphatic system, lipid transport, obesity, insulin resistance, and general inflammation.  相似文献   
60.
Inside the endoplasmic reticulum (ER) formylglycine-generating enzyme (FGE) catalyzes in newly synthesized sulfatases the post-translational oxidation of a specific cysteine. Thereby formylglycine is generated, which is essential for sulfatase activity. Here we show that ERp44 interacts with FGE forming heterodimeric and, to a lesser extent, also heterotetrameric and octameric complexes, which are stabilized through disulfide bonding between cysteine 29 of ERp44 and cysteines 50 and 52 in the N-terminal region of FGE. ERp44 mediates FGE retrieval to the ER via its C-terminal RDEL signal. Increasing ERp44 levels by overexpression enhances and decreasing ERp44 levels by silencing reduces ER retention of FGE. Suppressing disulfide bonding by mutating the critical cysteines neither abrogates ERp44.FGE complex formation nor interferes with ERp44-mediated retention of FGE, indicating that noncovalent interactions between ERp44 and FGE are sufficient to mediate ER retention. The N-terminal region of FGE harboring Cys(50) and Cys(52) is dispensible for catalytic activity in vitro but required for FGE-mediated activation of sulfatases in vivo. This in vivo activity is affected neither by overexpression nor by silencing of ERp44, indicating that a further ER component interacting with the N-terminal extension of FGE is critical for sulfatase activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号