首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4443篇
  免费   481篇
  国内免费   1篇
  2022年   41篇
  2021年   106篇
  2020年   68篇
  2019年   96篇
  2018年   125篇
  2017年   97篇
  2016年   121篇
  2015年   224篇
  2014年   219篇
  2013年   259篇
  2012年   325篇
  2011年   252篇
  2010年   166篇
  2009年   156篇
  2008年   240篇
  2007年   200篇
  2006年   199篇
  2005年   188篇
  2004年   141篇
  2003年   157篇
  2002年   150篇
  2001年   113篇
  2000年   113篇
  1999年   102篇
  1998年   55篇
  1997年   48篇
  1996年   54篇
  1995年   42篇
  1994年   44篇
  1993年   38篇
  1992年   78篇
  1991年   63篇
  1990年   78篇
  1989年   46篇
  1988年   48篇
  1987年   46篇
  1986年   32篇
  1985年   48篇
  1984年   25篇
  1983年   36篇
  1982年   39篇
  1981年   27篇
  1980年   16篇
  1979年   27篇
  1978年   17篇
  1977年   22篇
  1976年   14篇
  1975年   13篇
  1974年   12篇
  1968年   14篇
排序方式: 共有4925条查询结果,搜索用时 15 毫秒
141.
142.
143.
Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid‐state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high‐throughput exploration of the parametric landscape of functional solids and devices in a resource‐, time‐, and cost‐efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid‐based compositional gradients into solid‐state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic‐assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid‐state compositional lateral gradients.  相似文献   
144.
Organic solar cells based on ternary active layers can lead to higher power conversion efficiencies than corresponding binaries, and improved stability. The parameter space for optimization of multicomponent systems is considerably more complex than that of binaries, due to both, a larger number of parameters (e.g., two relative compositions rather than one) and intricate morphology–property correlations. Most experimental reports to date reasonably limit themselves to a relatively narrow subset of compositions (e.g., the 1:1 donor/s:acceptor/s trajectory). This work advances a methodology that allows exploration of a large fraction of the ternary phase space employing only a few (<10) samples. Each sample is produced by a designed sequential deposition of the constituent inks, and results in compositions gradients with ≈5000 points/sample that cover about 15%–25% of the phase space. These effective ternary libraries are then colocally imaged by a combination of photovoltaic techniques (laser and white light photocurrent maps) and spectroscopic techniques (Raman, photoluminescence, absorption). The generality of the methodology is demonstrated by investigating three ternary systems, namely PBDB‐T:ITIC:PC70BM, PTB7‐Th:ITIC:PC70BM, and P3HT:O‐IDFBR:O‐IDTBR. Complex performance‐structure landscapes through the ternary diagram as well as the emergence of several performance maxima are discovered.  相似文献   
145.
Alzheimer’s disease (AD) is characterized by the appearance of amyloid‐β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK‐p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec‐F which was upregulated on a subset of reactive microglia. The human paralog Siglec‐8 was also upregulated on microglia in AD. Siglec‐F and Siglec‐8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV‐2 cell line and human stem cell‐derived microglia models. Siglec‐F overexpression activates an endocytic and pyroptotic inflammatory response in BV‐2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine‐based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV‐2 cells. Collectively, our results point to an important role for mouse Siglec‐F and human Siglec‐8 in regulating microglial activation during neurodegeneration.  相似文献   
146.
Biological pathways play an important role in the occurrence, development and recovery of complex diseases, such as cancers, which are multifactorial complex diseases that are generally caused by mutation of multiple genes or dysregulation of pathways. We propose a path-specific effect statistic (PSE) to detect the differential specific paths under two conditions (e.g. case VS. control groups, exposure Vs. nonexposure groups). In observational studies, the path-specific effect can be obtained by separately calculating the average causal effect of each directed edge through adjusting for the parent nodes of nodes in the specific path and multiplying them under each condition. Theoretical proofs and a series of simulations are conducted to validate the path-specific effect statistic. Applications are also performed to evaluate its practical performances. A series of simulation studies show that the Type I error rates of PSE with Permutation tests are more stable at the nominal level 0.05 and can accurately detect the differential specific paths when comparing with other methods. Specifically, the power reveals an increasing trends with the enlargement of path-specific effects and its effect differences under two conditions. Besides, the power of PSE is robust to the variation of parent or child node of the nodes on specific paths. Application to real data of Glioblastoma Multiforme (GBM), we successfully identified 14 positive specific pathways in mTOR pathway contributing to survival time of patients with GBM. All codes for automatic searching specific paths linking two continuous variables and adjusting set as well as PSE statistic can be found in supplementary materials.  The proposed PSE statistic can accurately detect the differential specific pathways contributing to complex disease and thus potentially provides new insights and ways to unlock the black box of disease mechanisms.  相似文献   
147.
For molecular insect identification, amplicon sequencing methods are recommended because they offer a cost‐effective approach for targeting small sets of informative genes from multiple samples. In this context, high‐throughput multilocus amplicon sequencing has been achieved using the MiSeq Illumina sequencing platform. However, this approach generates short gene fragments of <500 bp, which then have to be overlapped using bioinformatics to achieve longer sequence lengths. This increases the risk of generating chimeric sequences or leads to the formation of incomplete loci. Here, we propose a modified nested amplicon sequencing method for targeting multiple loci from pinned insect specimens using the MiSeq Illumina platform. The modification exists in using a three‐step nested PCR approach targeting near full‐length loci in the initial PCR and subsequently amplifying short fragments of between 300 and 350 bp for high‐throughput sequencing using Illumina chemistry. Using this method, we generated 407 sequences of three loci from 86% of all the specimens sequenced. Out of 103 pinned bee specimens of replicated species, 71% passed the 95% sequence similarity threshold between species replicates. This method worked best for pinned specimens aged between 0 and 5 years, with a limit of 10 years for pinned and 14 years for ethanol‐preserved specimens. Hence, our method overcomes some of the challenges of amplicon sequencing using short read next generation sequencing and improves the possibility of creating high‐quality multilocus barcodes from insect collections.  相似文献   
148.
Thiol‐based redox‐regulation is vital for coordinating chloroplast functions depending on illumination and has been throroughly investigated for thioredoxin‐dependent processes. In parallel, glutathione reductase (GR) maintains a highly reduced glutathione pool, enabling glutathione‐mediated redox buffering. Yet, how the redox cascades of the thioredoxin and glutathione redox machineries integrate metabolic regulation and detoxification of reactive oxygen species remains largely unresolved because null mutants of plastid/mitochondrial GR are embryo‐lethal in Arabidopsis thaliana. To investigate whether maintaining a highly reducing stromal glutathione redox potential (EGSH) via GR is necessary for functional photosynthesis and plant growth, we created knockout lines of the homologous enzyme in the model moss Physcomitrella patens. In these viable mutant lines, we found decreasing photosynthetic performance and plant growth with increasing light intensities, whereas ascorbate and zeaxanthin/antheraxanthin levels were elevated. By in vivo monitoring stromal EGSH dynamics, we show that stromal EGSH is highly reducing in wild‐type and clearly responsive to light, whereas an absence of GR leads to a partial glutathione oxidation, which is not rescued by light. By metabolic labelling, we reveal changing protein abundances in the GR knockout plants, pinpointing the adjustment of chloroplast proteostasis and the induction of plastid protein repair and degradation machineries. Our results indicate that the plastid thioredoxin system is not a functional backup for the plastid glutathione redox systems, whereas GR plays a critical role in maintaining efficient photosynthesis.  相似文献   
149.
Reactivation of the androgen receptor signaling pathway in the emasculated environment is the main reason for the occurrence of castration-resistant prostate cancer (CRPC). The immunophilin FKBP51, as a co-chaperone protein, together with Hsp90 help the correct folding of AR. Rapamycin is a known small-molecule inhibitor of FKBP51, but its effect on the FKBP51/AR signaling pathway is not clear. In this study, the interaction mechanism between FKBP51 and rapamycin was investigated using steady-state fluorescence quenching, X-ray crystallization, MTT assay, and qRT-PCR. Steady-state fluorescence quenching assay showed that rapamycin could interact with FKBP51. The crystal of the rapamycin-FKBP51 complex indicated that rapamycin occupies the hydrophobic binding pocket of FK1 domain which is vital for AR activity. The residues involving rapamycin binding are mainly hydrophobic and may overlap with the AR interaction site. Further assays showed that rapamycin could inhibit the androgen-dependent growth of human prostate cancer cells by down-regulating the expression levels of AR activated downstream genes. Taken together, our study demonstrates that rapamycin suppresses AR signaling pathway by interfering with the interaction between AR and FKBP51. The results of this study not only can provide useful information about the interaction mechanism between rapamycin and FKBP51, but also can provide new clues for the treatment of prostate cancer and castration-resistant prostate cancer.  相似文献   
150.
Biogeochemistry - The initial online publication contained typesetting mistakes in the author information. The original article has been corrected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号