首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2807篇
  免费   198篇
  3005篇
  2023年   16篇
  2022年   22篇
  2021年   33篇
  2020年   37篇
  2019年   36篇
  2018年   44篇
  2017年   35篇
  2016年   81篇
  2015年   120篇
  2014年   140篇
  2013年   144篇
  2012年   214篇
  2011年   192篇
  2010年   130篇
  2009年   98篇
  2008年   163篇
  2007年   157篇
  2006年   143篇
  2005年   142篇
  2004年   144篇
  2003年   144篇
  2002年   144篇
  2001年   42篇
  2000年   24篇
  1999年   25篇
  1998年   51篇
  1997年   34篇
  1996年   22篇
  1995年   32篇
  1994年   25篇
  1993年   26篇
  1992年   32篇
  1991年   17篇
  1990年   20篇
  1989年   14篇
  1988年   21篇
  1987年   22篇
  1986年   18篇
  1985年   12篇
  1984年   12篇
  1982年   11篇
  1981年   23篇
  1980年   15篇
  1979年   10篇
  1978年   13篇
  1977年   11篇
  1976年   8篇
  1972年   6篇
  1969年   6篇
  1968年   7篇
排序方式: 共有3005条查询结果,搜索用时 15 毫秒
41.
Cre/lox recombination in vivo has become an important tool to induce chromosomal rearrangements like deletions. Using a combination of Ds transposition and Cre/lox recombination in two independent experiments on chromosomes 6 and 7 of tomato, two sets of somatic deletions up to a size of 200 kb were obtained. The efficiency of somatic deletion decreased with increasing deletion size. The largest germinally transmitted deletion had a size of only 55 kb. The results show that Cre-mediated deletion in somatic cells is less efficient when the lox sites are separated over larger distances. A further drop of the deletion efficiency after germinal transmission of the larger deletions can be explained by the probable loss of genes that are of vital importance to gametophyte function. Plasmid rescue of an 8.4 kb circularised deleted DNA showed that the Cre-mediated deletion takes place in tomato as expected. Since the circular Cre-deleted DNA could only be PCR amplified in plant cells where the deletion was not complete, the double-stranded DNA circle is assumed to be instable.  相似文献   
42.
A functional comparison was made between the wild-type bradykinin B2 receptor (B2wt) and the chimera B2eGFP (enhanced green-fluorescent protein fused to the C-terminus of B2wt), both stably expressed in HEK 293 cells. There was almost no difference in terms of ligand-inducible receptor phosphorylation and internalization, signal transduction (accumulation of inositol phosphates) or expression and affinity. However, stimulation for up to 8 h with 10 microM bradykinin (BK) resulted in a strong decrease in surface receptors (by 60% within 5 h) in B2wt, but not in B2eGFP. When the expression levels of both constructs where comparably reduced using a weaker promoter, long-term stimulation resulted in a reduction in surface receptors for B2wt(low) to less than 20% within 1 h, whereas the chimera B2eGFP(low) still displayed 50% binding activity after 2 h. A 1-h incubation in the absence of BK resulted in a recovery of 60% of the binding in B2wt(low) after 1-h stimulation with BK, but of only 20% after 7-h stimulation. In contrast, B2eGFP(low) levels were restored to more than 70%, even after 7-h stimulation. These data indicate that although the fusion of eGFP to B2wt does not affect its ligand-induced internalization, it strongly reduces the down-regulation, most likely by promoting receptor recycling over degradation.  相似文献   
43.
Plasma membrane vesicles with H+-ATPase activity were purified from 8-day-old oat ( Avena sativa L. cv. Brighton) roots using an aqueous polymer two-phase system. Of several detergents tested, only lysophosphatidylcholine solubilized the H+-ATPase in an active form. Solubilization of the H+-ATPase with lysophosphatidylcholine was possible in the absence of glycerol, but the ATPase activity decreased about 4–5 times as rapidly in the absence as in the presence of 30% (w/v) glycerol. The solubilized enzyme was further stabilized by ATP and protons. Addition of 1 m M ATP to the plasma membranes halted inactivation of the H+-ATPase. Even in the absence of polyol compounds and ATP, the enzyme was stable for hours at relatively low pH with an optimum around pH 6.7 at room temperature. The curve for the stability of soluble H+-ATPase as a function of pH closely resembles the pH curve for the activity of the H+-ATPase. This suggests that binding of protons to transport sites may stabilize the soluble H+-ATPase in an enzymatically active form.  相似文献   
44.
The influence of seagrass Zostera marina on sediment characteristics was examined in two contrasting sediments, one organic-rich and one organic-poor. The presence of plants leads to reduced sediment redox potential in both sediment types compared to bare sediment with the largest effects in the organic-poor sediment. Z. marina stimulated the sulfate reduction rates in organic-poor sediment with ∼50% and higher pools of dissolved organic carbon (DOC) were found. In contrast, sulfate reduction rates were lower in vegetated compared to bare sites in the organic-rich sediment. Despite a low contribution of dissolved carbohydrate (DCHO) to the DOC pool (<5%), the seagrass vegetation was responsible for an increase of ∼50% in DCHO pools with a peak in the root zone suggesting that Z. marina supplied DCHO to the pore waters. The Z. marina meadows also enhanced the contribution of particulate carbohydrate (PCHO) to sedimentary particulate organic carbon (POC) pools by 6-14% compared to bare sediment. Although the PCHO pools were higher in organic-rich than organic-poor sediments, the analyses of carbohydrate composition revealed that three groups of neutral sugars including glucose, galactose and mannose+xylose were the major compounds of PCHO and contributed with >60% to sedimentary carbohydrate pools at both sites. Only glucose showed depletion with depth in the vegetated sediments, whereas the percentage of ribose and rhamnose increased indicating a selective degradation of labile carbohydrates in the meadows. Galactose and mannose+xylose appeared to represent a refractory part of carbohydrate that remained after degradation of the more labile components. The sugar content was rather constant with depth at the bare organic-rich sediment indicating that only recalcitrant carbohydrate pools were buried. There was less difference in the PCHO composition profiles between vegetated and bare organic-poor sediments.  相似文献   
45.
46.
Multiheme c-type cytochromes from members of the Desulfovibrionacea and Geobactereacea families play crucial roles in the bioenergetics of these microorganisms. Thermodynamic studies using NMR and visible spectroscopic techniques on tetraheme cytochromes c(3) isolated from Desulfovibrio spp. and more recently on a triheme cytochrome from Geobacter sulfurreducens showed that the properties of each redox centre are modulated by the neighbouring redox centres enabling these proteins to perform energy transduction and thus contributing to cellular energy conservation. Electron/proton transfer coupling relies on redox-linked conformational changes that were addressed for some multiheme cytochromes from the comparison of protein structure of fully reduced and fully oxidised forms. In this work, we identify for the first time in a multiheme cytochrome the simultaneous presence of two different conformations in solution. This was achieved by probing the different oxidation stages of a triheme cytochrome isolated from G. sulfurreducens using 2D-NMR techniques. The results presented here will be the foundations to evaluate the modulation of the redox centres properties by conformational changes that occur during the reoxidation of a multiheme protein.  相似文献   
47.
Cowpea mosaic virus (CPMV), a plant virus that is a member of the picornavirus superfamily, is increasingly being used for nanotechnology applications, including material science, vascular imaging, vaccine development, and targeted drug delivery. For these applications, it is critical to understand the in vivo interactions of CPMV within the mammalian system. Although the bioavailability of CPMV in the mouse has been demonstrated, the specific interactions between CPMV and mammalian cells need to be characterized further. Here we demonstrate that although the host range for replication of CPMV is confined to plants, mammalian cells nevertheless bind and internalize CPMV in significant amounts. This binding is mediated by a conserved 54-kDa protein found on the plasma membranes of both human and murine cell lines. Studies using a deficient cell line, deglycosidases, and glycosylation inhibitors showed that the CPMV binding protein (CPMV-BP) is not glycosylated. A possible 47-kDa isoform of the CPMV-BP was also detected in the organelle and nuclear subcellular fraction prepared from murine fibroblasts. Further characterization of CPMV-BP is important to understand how CPMV is trafficked through the mammalian system and may shed light on how picornaviruses may have evolved between plant and animal hosts.  相似文献   
48.
49.
The enzyme 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) synthase catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to MECDP, a highly unusual cyclodiphosphate-containing intermediate on the mevalonate-independent pathway to isopentenyl diphosphate and dimethylallyl diphosphate. We now report two x-ray crystal structures of MECDP synthase refined to 2.8-A resolution. The first structure contains a bound Mn(2+) cation, and the second structure contains CMP, MECDP, and Mn(2+). The protein adopts a homotrimeric quaternary structure built around a central hydrophobic cavity and three externally facing active sites. Each of these active sites is located between two adjacent monomers. A tetrahedrally arranged transition metal binding site, potentially occupied by Mn(2+), sits at the base of the active site cleft. A phosphate oxygen of MECDP and the side chains of Asp(8), His(10), and His(42) occupy the metal ion coordination sphere. These structures reveal for the first time the structural determinants underlying substrate, product, and Mn(2+) recognition and the likely catalytic mechanism accompanying the biosynthesis of the cyclodiphosphate-containing isoprenoid precursor, MECDP.  相似文献   
50.
The effect of water on the alcoholysis of methyl propionate and n-propanol catalyzed by immobilized Candida antarctica lipase B (CALB) has been compared in a continuous solid-gas reactor and in an organic liquid medium. The enthalpic and entropic contributions of water to the Gibbs free energy of activation in the gas phase were different from the ones in the organic phase, the inverse trends being observed for the variation of both DeltaH* and DeltaS* with water activity.Different phenomena were identified for their influence on the thermodynamic parameters. When increasing a(w), the enhanced flexibility of the enzyme was predominant in the gas phase whereas substrate-solvent interactions due to an increased polarity of the solvent affected mainly the thermodynamic parameters in the organic phase. The observed variations of DeltaG* with water activity were in accordance with kinetics results previously obtained in both reaction media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号