首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5348篇
  免费   535篇
  2022年   34篇
  2021年   63篇
  2020年   56篇
  2019年   51篇
  2018年   74篇
  2017年   59篇
  2016年   124篇
  2015年   214篇
  2014年   219篇
  2013年   228篇
  2012年   349篇
  2011年   333篇
  2010年   209篇
  2009年   174篇
  2008年   282篇
  2007年   284篇
  2006年   249篇
  2005年   265篇
  2004年   245篇
  2003年   255篇
  2002年   252篇
  2001年   168篇
  2000年   121篇
  1999年   119篇
  1998年   83篇
  1997年   69篇
  1996年   60篇
  1995年   58篇
  1994年   48篇
  1993年   48篇
  1992年   93篇
  1991年   70篇
  1990年   72篇
  1989年   65篇
  1988年   56篇
  1987年   65篇
  1986年   51篇
  1985年   43篇
  1984年   46篇
  1982年   31篇
  1981年   35篇
  1980年   35篇
  1979年   50篇
  1978年   34篇
  1977年   25篇
  1975年   24篇
  1974年   22篇
  1973年   22篇
  1972年   23篇
  1969年   22篇
排序方式: 共有5883条查询结果,搜索用时 828 毫秒
191.
192.
193.
194.
195.
Large‐scale bioreactors for the production of monoclonal antibodies reach volumes of up to 25 000 L. With increasing bioreactor size, mixing is however affected negatively, resulting in the formation of gradients throughout the reactor. These gradients can adversely affect process performance at large scale. Since mammalian cells are sensitive to changes in pH, this study investigated the effects of pH gradients on process performance. A 2‐Compartment System was established for this purpose to expose only a fraction of the cell population to pH excursions and thereby mimicking a large‐scale bioreactor. Cells were exposed to repeated pH amplitudes of 0.4 units (pH 7.3), which resulted in decreased viable cell counts, as well as the inhibition of the lactate metabolic shift. These effects were furthermore accompanied by increased absolute lactate levels. Continuous assessment of molecular attributes of the expressed target protein revealed that subunit assembly or N‐glycosylation patterns were only slightly influenced by the pH excursions. The exposure of more cells to the same pH amplitudes further impaired process performance, indicating this is an important factor, which influences the impact of pH inhomogeneity. This knowledge can aid in the design of pH control strategies to minimize the effects of pH inhomogeneity in large‐scale bioreactors.  相似文献   
196.
The receptor tyrosine kinase HER2 is associated with a number of human malignancies and is an important therapeutic target. The antibody‐drug conjugate trastuzumab emtansine (T‐DM1; Kadcyla®) is recommended as a first‐line treatment for patients with HER2‐positive metastatic breast cancer. T‐DM1 combines the antibody‐induced effects of the anti‐HER2 antibody trastuzumab (Herceptin®) with the cytotoxic effect of the tubulin inhibitor mertansine (DM1). For DM1 to have effect, the T‐DM1‐HER2 complex has to be internalized and the trastuzumab part of T‐DM1 has to be degraded. HER2 is, however, considered endocytosis‐resistant. As a result of this, trastuzumab is only internalized to a highly limited extent, and if internalized, it is rapidly recycled. The exact reasons for the endocytosis resistance of HER2 are not clear, but it is stabilized by heat‐shock protein 90 (Hsp90) and Hsp90 inhibitors induce internalization and degradation of HER2. HER2 can also be internalized upon activation of protein kinase C, and contrary to trastuzumab alone, the combination of two or more anti‐HER2 antibodies can induce efficient internalization and degradation of HER2. With intention to find ways to improve the action of T‐DM1, we investigated how different ways of inducing HER2 internalization leads to degradation of trastuzumab. The results show that although both Hsp90 inhibition and activation of protein kinase C induce internalization of trastuzumab, only Hsp90 inhibition induces degradation. Furthermore, we find that antibody internalization and degradation are increased when trastuzumab is combined with the clinically approved anti‐HER2 antibody pertuzumab (Perjeta®).  相似文献   
197.
Predation is a ubiquitous and strong selective pressure on living organisms. Transparency is a predation defence widespread in water but rare on land. Some Lepidoptera display transparent patches combined with already cryptic opaque patches. A recent study showed that transparency reduced detectability of aposematic prey with conspicuous patches. However, whether transparency has any effect at reducing detectability of already cryptic prey is still unknown. We conducted field predation experiments with free avian predators where we monitored and compared survival of a fully opaque grey artificial form (cryptic), a form including transparent windows and a wingless artificial butterfly body. Survival of the transparent forms was similar to that of wingless bodies and higher than that of fully opaque forms, suggesting a reduction of detectability conferred by transparency. This is the first evidence that transparency decreases detectability in cryptic terrestrial prey. Future studies should explore the organization of transparent and opaque patches in animals and their interplay on survival, as well as the costs and other potential benefits associated with transparency on land.  相似文献   
198.
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments.  相似文献   
199.
Free amino acids (FAAs) and protein‐bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation‐tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号