首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   57篇
  934篇
  2023年   3篇
  2022年   20篇
  2021年   28篇
  2020年   9篇
  2019年   14篇
  2018年   22篇
  2017年   21篇
  2016年   28篇
  2015年   50篇
  2014年   58篇
  2013年   80篇
  2012年   69篇
  2011年   65篇
  2010年   47篇
  2009年   40篇
  2008年   47篇
  2007年   64篇
  2006年   59篇
  2005年   47篇
  2004年   26篇
  2003年   33篇
  2002年   32篇
  2001年   7篇
  2000年   1篇
  1999年   7篇
  1998年   8篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有934条查询结果,搜索用时 0 毫秒
891.
The positioning of the nucleus is achieved by two interconnected processes, anchoring and migration, both of which are controlled by cytoskeleton structures. Rotation is a special type of nuclear motility in many cell types, but its significance remains unclear. We used a vimentin-null cell line, MFT-16, which shows extensive nuclear rotation to study the phenomenon in detail. By selective disruption of cytoskeletal structures and video-microscopic analysis, nuclear rotation was a microtubule-dependent process that F-actin partially impedes. The dynein–dynactin complex is responsible and inhibiting this motor by expression of a dominant negative mutant of its component P-150 completely stops it. Nuclear rotation is powered by dynein associated with the nuclear envelope along stationary microtubules, centrosomes remaining immobile. We confirmed that vimentin IFs inhibit nuclear rotation, and variant proteins of the mutated wild type gene for vimentin that lacked considerable fragments of the N- and C-terminal domains restored nuclear anchoring. Immunochemical analysis showed that these mutated IFs also bound plectin, arguing for a key role of this cytolinker protein in nuclear anchoring. It is proposed that this versatile machinery guarantees not only rotation and the correct location of a nucleus, but also its orientation in a cell.  相似文献   
892.
The accessory α2δ subunits of voltage-gated calcium channels are membrane-anchored proteins, which are highly glycosylated, possess multiple disulfide bonds, and are post-translationally cleaved into α2 and δ. All α2δ subunits have a C-terminal hydrophobic, potentially trans-membrane domain and were described as type I transmembrane proteins, but we found evidence that they can be glycosylphosphatidylinositol-anchored. To probe further the function of membrane anchoring in α2δ subunits, we have now examined the properties of α2δ-1 constructs truncated at their putative glycosylphosphatidylinositol anchor site, located before the C-terminal hydrophobic domain (α2δ-1ΔC-term). We find that the majority of α2δ-1ΔC-term is soluble and secreted into the medium, but unexpectedly, some of the protein remains associated with detergent-resistant membranes, also termed lipid rafts, and is extrinsically bound to the plasma membrane. Furthermore, heterologous co-expression of α2δ-1ΔC-term with CaV2.1/β1b results in a substantial enhancement of the calcium channel currents, albeit less than that produced by wild-type α2δ-1. These results call into question the role of membrane anchoring of α2δ subunits for calcium current enhancement.  相似文献   
893.
894.
Expansins are wall-loosening proteins that induce wall stress relaxation and irreversible wall extension in a pH-dependent manner. Despite a substantial body of work has been performed on the characterization of many expansins genes in different plant species, the knowledge about their precise biological roles during plant development remains scarce. To yield insights into the expansion process in Petunia hybrida, PhEXPA1, an expansin gene preferentially expressed in petal limb, has been characterized. The constitutive overexpression of PhEXPA1 significantly increased expansin activity, cells size and organ dimensions. Moreover, 35S::PhEXPA1 transgenic plants exhibited an altered cell wall polymer composition and a precocious timing of axillary meristem development compared with wild-type plants. These findings supported a previous hypothesis that expansins are not merely structural proteins involved in plant cell wall metabolism but they also take part in many plant development processes. Here, to support this expansins dual role, we discuss about differential cell wall-related genes expressed in PhEXPA1 expression mutants and gradients of altered petunia branching pattern.  相似文献   
895.
Nanoparticle-encapsulated thiazole antibiotic, thiostrepton, has been shown to be an effective agent for inhibiting tumor growth in solid tumor models through the inhibition of proteasomal activity by the induction of apoptosis in cancer cells. Here, we show the efficacy of thiostrepton-micelles in inhibiting tumor growth in a DEN/PB-induced liver cancer model. We also demonstrate an enhanced anticancer effect of the combination treatment of thiostrepton with bortezomib, another proteasome inhibitor in this liver cancer model.  相似文献   
896.
897.
We analysed the effects of nitrogen mustard (HN2) on the growth, cell cycle distributions, and ratios of tumour cells to host cells for MCa-11 tumours grown in vivo. Treatment of tumour-bearing BALB/c mice with 3 mg/kg of HN2 produced a significant slowing of MCa-11 tumour growth. Seventy-two hours after treatment in vivo with either 3 or 4 mg/kg of HN2, the host cells in the treated tumours showed a significantly decreased G0/G1 peak and an increased G2/M peak (P < 0.01), whereas the cancer cells in the treated tumours showed significant increases in the G0/G1 peak coupled with relatively decreased proportions of S and G2/M tumour cells (P < 0.001). The ratio of the total number of cancer cells to the total number of host cells in the tumours was significantly increased 72 h after HN2 administration (P<0.01). Thirty-two days after treatment with HN2, the cell cycle distributions of the host and tumour cells in the treatment and control tumours had returned to being identical, but the ratio of the total number of cancer cells to the total number of host cells remained increased in the treated tumours (P<0.01). These results show that the administration in vivo of HN2 can lead to entirely different cell cycle effects for the host and cancer cells in the same tumour, and that the partial growth arrest of MCa-11 tumours from HN2 treatment may be due in part to the preferential destruction of host cells rather than solely to a direct cytotoxic effect on the cancer cells.  相似文献   
898.
Heart valve disease is a major burden in the Western world and no effective treatment is available. This is mainly due to a lack of knowledge of the molecular, cellular and mechanical mechanisms underlying the maintenance and/or loss of the valvular structure. Current models used to study valvular biology include in vitro cultures of valvular endothelial and interstitial cells. Although, in vitro culturing models provide both cellular and molecular mechanisms, the mechanisms involved in the 3D-organization of the valve remain unclear. While in vivo models have provided insight into the molecular mechanisms underlying valvular development, insight into adult valvular biology is still elusive. In order to be able to study the regulation of the valvular 3D-organization on tissue, cellular and molecular levels, we have developed the Miniature Tissue Culture System. In this ex vivo flow model the mitral or the aortic valve is cultured in its natural position in the heart. The natural configuration and composition of the leaflet are maintained allowing the most natural response of the valvular cells to stimuli. The valves remain viable and are responsive to changing environmental conditions. This MTCS may provide advantages on studying questions including but not limited to, how does the 3D organization affect valvular biology, what factors affect 3D organization of the valve, and which network of signaling pathways regulates the 3D organization of the valve.  相似文献   
899.
900.
Importin-α proteins do not only mediate the nuclear import of karyophilic proteins but also regulate spindle assembly during mitosis and the assembly of ring canals during Drosophila oogenesis. Three importin-α genes are present in the genome of Drosophila. To gain further insights into their function we analysed their expression during spermatogenesis by using antibodies raised against each of the three Importin-α proteins identified in Drosophila, namely, Imp-α1, -α2, and -α3. We found that each Imp-α is expressed during a specific and limited period of spermatogenesis. Strong expression of Imp-α2 takes place in spermatogonial cells, persists in spermatocytes, and lasts up to the completion of meiosis. In growing spermatocytes, the intracellular localisation of Imp-α2 appears to be dependent upon the rate of cell growth. In pupal testes Imp-α2 is essentially present in the spermatocyte nucleus but is localised in the cytoplasm of spermatocytes from adult testes. Both Imp-α1 and -α3 expression initiates at the beginning of meiosis and ends during spermatid differentiation. Imp-α1 expression extends up to the onset of the elongation phase, whereas that of Imp-α3 persists up to the completion of nuclear condensation when the spermatids become individualised. During meiosis Imp-α1 and -α3 are dispersed in the karyoplasm where they are partially associated with the nuclear spindle, albeit not with the asters. At telophase they aggregate around the chromatin. During sperm head differentiation, both Imp-α1 and -α3 are nuclear. These data indicate that each Imp-α protein carries during Drosophila spermatogenesis distinct, albeit overlapping, functions that may involve nuclear import of proteins, microtubule organisation, and other yet unknown processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号