首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1542篇
  免费   104篇
  1646篇
  2024年   2篇
  2023年   4篇
  2022年   28篇
  2021年   49篇
  2020年   14篇
  2019年   22篇
  2018年   39篇
  2017年   33篇
  2016年   53篇
  2015年   79篇
  2014年   90篇
  2013年   129篇
  2012年   120篇
  2011年   113篇
  2010年   74篇
  2009年   76篇
  2008年   85篇
  2007年   107篇
  2006年   85篇
  2005年   96篇
  2004年   62篇
  2003年   70篇
  2002年   67篇
  2001年   11篇
  2000年   5篇
  1999年   15篇
  1998年   16篇
  1997年   14篇
  1996年   10篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   6篇
  1980年   5篇
  1978年   4篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1646条查询结果,搜索用时 15 毫秒
51.
The ecological and biogeochemical relevance of hydrolytic enzymes associated with the fungal cell wall has been poorly studied in ectomycorrhizal (ECM) fungi. We used a modified sequential extraction procedure to investigate the activity of various hydrolytic enzymes (β-glucosidase, acid-phosphatase, leucine-aminopeptidase, chitinase, xylanase and glucuronidase) and their association with the cell wall of three ECM fungi (Rhizopogon roseolus, Paxillus involutus and Piloderma croceum). Fungi were grown on C-rich solid medium under three different P concentrations (3.7, 0.37 and 0.037 mM). The sequential extraction procedure classifies enzymes as: (a) cytosolic, (b) loosely bound, (c) hydrophobically bound, (d) ionically bound and (e) covalently bound. Results showed that for the same fungus absolute enzymatic activity was affected by P concentration, whilst enzymatic compartmentalization among the cytosol and the cell wall fractions was not. The association of enzymes with the cell wall was fungus- and enzyme-specific. Our data indicate also that enzymes best known for being either extracellular or cytosolic or both, do act in muro as well. The ecological implications of cell wall-bound enzymes and the potential applications and limitations of sequential extractions are further discussed.  相似文献   
52.
The clinical usefulness of an immunotest was evaluated by using purified poly(adenosine diphosphate (ADP)-ribose) polymerase from Sulfolobus solfataricus (PARPSso) as an antigen to detect the presence of abnormal anti-PARP antibodies in the sera of patients with systemic lupus erythematosus (SLE) at different clinical stages. Sera from 44 patients with SLE, subgrouped on the basis of disease activity (16 with inactive disease, 28 with active disease) were analysed with a new immunotest to detect anti-PARP antibodies, and with an immunofluorescent (IIF) assay for antinuclear antibodies (ANA) detection. ANA detection by IIF revealed that sera of healthy subjects were negative, whereas sera from patients with SLE were positive in all cases (13 positive at 1:80, 15 at 1:160, 15 at 1:320, 1 at 1:640, v/v). Anti-PARP activity was higher in ANA-positive patients than in controls (p?=?0.005). Within the group of SLE sera, disease and anti-PARP activity was increased more significantly in patients with active than in those with inactive disease (p?p?=?0.001, respectively). Correlation between anti-PARP and disease activity in SLE patients was statistically significant (p?Sso seems to be suitable for detecting anti-PARP antibodies and could play a role as a serological marker of disease activity in patients with SLE.  相似文献   
53.

Key message

We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL.

Abstract

The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.  相似文献   
54.
55.
Cut lettuce salads and shredded carrots were prepared according to four different procedures in order to determine the influence of various operations on the shelf-life of these ‘minimally processed’ foods. In particular, the level of active chlorine used or its residue after washing as well as the processing time were considered. The results emphasize the role of free chlorine in reduction of the contamination level and its effectiveness toward Pseudomonadaceae and Enterobacteriaceae. Moreover a 12-h delay without refrigeration, after pre-washing or removal of ends, caused a lengthening of the processing time, enough to allow microbial proliferation and subsequent shortening of shelf-life. Shelf-life extension and the improvement of safety and quality of these products can be obtained by means of adequate processing operations. Received 29 September 1998/ Accepted in revised form 19 July 1999  相似文献   
56.
57.
Wilms'' tumour (WT) is a pediatric tumor of the kidney that arises via failure of the fetal developmental program. The absence of identifiable mutations in the majority of WTs suggests the frequent involvement of epigenetic aberrations in WT. We therefore conducted a genome-wide analysis of promoter hypermethylation in WTs and identified hypermethylation at chromosome 5q31 spanning 800 kilobases (kb) and more than 50 genes. The methylated genes all belong to α-, β-, and γ-protocadherin (PCDH) gene clusters (Human Genome Organization nomenclature PCDHA@, PCDHB@, and PCDHG@, respectively). This demonstrates that long-range epigenetic silencing (LRES) occurs in developmental tumors as well as in adult tumors. Bisulfite polymerase chain reaction analysis showed that PCDH hypermethylation is a frequent event found in all Wilms'' tumor subtypes. Hypermethylation is concordant with reduced PCDH expression in tumors. WT precursor lesions showed no PCDH hypermethylation, suggesting that de novo PCDH hypermethylation occurs during malignant progression. Discrete boundaries of the PCDH domain are delimited by abrupt changes in histone modifications; unmethylated genes flanking the LRES are associated with permissive marks which are absent from methylated genes within the domain. Silenced genes are marked with non-permissive histone 3 lysine 9 dimethylation. Expression analysis of embryonic murine kidney and differentiating rat metanephric mesenchymal cells demonstrates that Pcdh expression is developmentally regulated and that Pcdhg@ genes are expressed in blastemal cells. Importantly, we show that PCDHs negatively regulate canonical Wnt signalling, as short-interfering RNA–induced reduction of PCDHG@ encoded proteins leads to elevated β-catenin protein, increased β-catenin/T-cell factor (TCF) reporter activity, and induction of Wnt target genes. Conversely, over-expression of PCDHs suppresses β-catenin/TCF-reporter activity and also inhibits colony formation and growth of cancer cells in soft agar. Thus PCDHs are candidate tumor suppressors that modulate regulatory pathways critical in development and disease, such as canonical Wnt signaling.  相似文献   
58.
A series of coumarin analogs, designed and synthesised as potential fluorescent zinc probes were evaluated for their biological activity as anti-inflammatory and antioxidant agents. The effect of the synthesised compounds on inflammation, using the carrageenin-induced rat paw oedema model, was studied. In general, the compounds were found to be potent anti-inflammatory agents (26.5-64%). Compound 5 was found to interact significantly with 1,1-diphenyl-2-picryl-hydrazyl stable free radical (DPPH) whereas the remainder were inactive in this assay. The compounds inhibit in general the soybean lipoxygenase and scavenge superoxide anion radicals. The anti-inflammatory activity seems to be connected with their reducing activity. Their RM values were determined as an expression of their lipophilicity. Theoretical calculations of their lipophilicity as clog P were performed indicating that only a poor relationship exists between their lipophilicity and anti-inflammatory activity.  相似文献   
59.
Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.Methods for genome editing in plant cells have fallen behind the remarkable progress made in whole-genome sequencing projects. The availability of reliable and efficient methods for genome editing would foster gene discovery and functional gene analyses in model plants and the introduction of novel traits in agriculturally important species (Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009). Genome editing in various species is typically achieved by integrating foreign DNA molecules into the target genome by homologous recombination (HR). Genome editing by HR is routine in yeast (Saccharomyces cerevisiae) cells (Scherer and Davis, 1979) and has been adapted for other species, including Drosophila, human cell lines, various fungal species, and mouse embryonic stem cells (Baribault and Kemler, 1989; Venken and Bellen, 2005; Porteus, 2007; Hall et al., 2009; Laible and Alonso-González, 2009; Tenzen et al., 2009). In plants, however, foreign DNA molecules, which are typically delivered by direct gene-transfer methods (e.g. Agrobacterium and microbombardment of plasmid DNA), often integrate into the target cell genome via nonhomologous end joining (NHEJ) and not HR (Ray and Langer, 2002; Britt and May, 2003).Various methods have been developed to indentify and select for rare site-specific foreign DNA integration events or to enhance the rate of HR-mediated DNA integration in plant cells. Novel T-DNA molecules designed to support strong positive- and negative-selection schemes (e.g. Thykjaer et al., 1997; Terada et al., 2002), altering the plant DNA-repair machinery by expressing yeast chromatin remodeling protein (Shaked et al., 2005), and PCR screening of large numbers of transgenic plants (Kempin et al., 1997; Hanin et al., 2001) are just a few of the experimental approaches used to achieve HR-mediated gene targeting in plant species. While successful, these approaches, and others, have resulted in only a limited number of reports describing the successful implementation of HR-mediated gene targeting of native and transgenic sequences in plant cells (for review, see Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009; Weinthal et al., 2010).HR-mediated gene targeting can potentially be enhanced by the induction of genomic double-strand breaks (DSBs). In their pioneering studies, Puchta et al. (1993, 1996) showed that DSB induction by the naturally occurring rare-cutting restriction enzyme I-SceI leads to enhanced HR-mediated DNA repair in plants. Expression of I-SceI and another rare-cutting restriction enzyme (I-CeuI) also led to efficient NHEJ-mediated site-specific mutagenesis and integration of foreign DNA molecules in plants (Salomon and Puchta, 1998; Chilton and Que, 2003; Tzfira et al., 2003). Naturally occurring rare-cutting restriction enzymes thus hold great promise as a tool for genome editing in plant cells (Carroll, 2004; Pâques and Duchateau, 2007). However, their wide application is hindered by the tedious and next to impossible reengineering of such enzymes for novel DNA-target specificities (Pâques and Duchateau, 2007).A viable alternative to the use of rare-cutting restriction enzymes is the zinc finger nucleases (ZFNs), which have been used for genome editing in a wide range of eukaryotic species, including plants (e.g. Bibikova et al., 2001; Porteus and Baltimore, 2003; Lloyd et al., 2005; Urnov et al., 2005; Wright et al., 2005; Beumer et al., 2006; Moehle et al., 2007; Santiago et al., 2008; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). Here too, ZFNs have been used to enhance DNA integration via HR (e.g. Shukla et al., 2009; Townsend et al., 2009) and as an efficient tool for the induction of site-specific mutagenesis (e.g. Lloyd et al., 2005; Zhang et al., 2010) in plant species. The latter is more efficient and simpler to implement in plants as it does not require codelivery of both ZFN-expressing and donor DNA molecules and it relies on NHEJ—the dominant DNA-repair machinery in most plant species (Ray and Langer, 2002; Britt and May, 2003).ZFNs are artificial restriction enzymes composed of a fusion between an artificial Cys2His2 zinc-finger protein DNA-binding domain and the cleavage domain of the FokI endonuclease. The DNA-binding domain of ZFNs can be engineered to recognize a variety of DNA sequences (for review, see Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). The FokI endonuclease domain functions as a dimer, and digestion of the target DNA requires proper alignment of two ZFN monomers at the target site (Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). Efficient and coordinated expression of both monomers is thus required for the production of DSBs in living cells. Transient ZFN expression, by direct gene delivery, is the method of choice for targeted mutagenesis in human and animal cells (e.g. Urnov et al., 2005; Beumer et al., 2006; Meng et al., 2008). Among the different methods used for high and efficient transient ZFN delivery in animal and human cell lines are plasmid injection (Morton et al., 2006; Foley et al., 2009), direct plasmid transfer (Urnov et al., 2005), the use of integrase-defective lentiviral vectors (Lombardo et al., 2007), and mRNA injection (Takasu et al., 2010).In plant species, however, efficient and strong gene expression is often achieved by stable gene transformation. Both transient and stable ZFN expression have been used in gene-targeting experiments in plants (Lloyd et al., 2005; Wright et al., 2005; Maeder et al., 2008; Cai et al., 2009; de Pater et al., 2009; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). In all cases, direct gene-transformation methods, using polyethylene glycol, silicon carbide whiskers, or Agrobacterium, were deployed. Thus, while mutant plants and tissues could be recovered, potentially without any detectable traces of foreign DNA, such plants were generated using a transgenic approach and are therefore still likely to be classified as transgenic. Furthermore, the recovery of mutants in many cases is also dependent on the ability to regenerate plants from protoplasts, a procedure that has only been successfully applied in a limited number of plant species. Therefore, while ZFN technology is a powerful tool for site-specific mutagenesis, its wider implementation for plant improvement may be somewhat limited, both by its restriction to certain plant species and by legislative restrictions imposed on transgenic plants.Here we describe an alternative to direct gene transfer for ZFN delivery and for the production of mutated plants. Our approach is based on the use of a novel Tobacco rattle virus (TRV)-based expression system, which is capable of systemically infecting its host and spreading into a variety of tissues and cells of intact plants, including developing buds and regenerating tissues. We traced the indirect ZFN delivery in infected plants by activation of a mutated reporter gene and we demonstrate that this approach can be used to recover mutated plants.  相似文献   
60.
The synthesis of a series of 9-ethyladenine derivatives bearing alkynyl chains in 2- or 8-position was undertaken, based on the observation that replacement of the sugar moiety in adenosine derivatives with alkyl groups led to adenosine receptor antagonists. All the synthesized compounds were tested for their affinity at human and rat A1, A2A, and A3 adenosine receptors in binding assays; the activity at the human A2B receptor was determined in adenylyl cyclase experiments. Biological data showed that the 2-alkynyl derivatives possess good affinity and are slightly selective for the human A2A receptor. The same compounds tested on the rat A1 and A2A subtypes showed in general lower affinity for both receptors. On the other hand, the affinity of the 8-alkynyl derivatives at the human A1, A2A, and A2B receptors proved to be lower than that of the corresponding 2-alkynyl derivatives. On the contrary, the affinity of the same compounds for the human A3 receptor was improved, resulting in A3 selectivity. As in the case of the 2-alkynyl-substituted compounds, the 8-alkynyl derivatives showed decreased affinity for rat receptors. However, it is worthwhile to note that the 8-phenylethynyl-9-ethyladenine was the most active compound of the two series (Ki in the nanomolar range) at both the human and rat A3 subtype. Docking experiments of the 2- and 8-phenylethynyl-9-ethyladenines, at a rhodopsin-based homology model, gave a rational explanation of the preference of the human A3 receptor for the 8-substituted compound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号