首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   42篇
  516篇
  2023年   4篇
  2022年   13篇
  2021年   22篇
  2020年   5篇
  2019年   15篇
  2018年   15篇
  2017年   12篇
  2016年   17篇
  2015年   21篇
  2014年   31篇
  2013年   29篇
  2012年   34篇
  2011年   37篇
  2010年   24篇
  2009年   19篇
  2008年   23篇
  2007年   29篇
  2006年   27篇
  2005年   18篇
  2004年   18篇
  2003年   7篇
  2002年   16篇
  2001年   7篇
  2000年   5篇
  1999年   3篇
  1998年   15篇
  1997年   4篇
  1996年   4篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   3篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
  1963年   1篇
  1960年   2篇
  1957年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
71.

Background

Human rhinoviruses (HRVs) are the predominant cause of common cold. In addition, HRVs are implicated in the worsening of COPD and asthma, as well as the loss of lung transplants. Despite significant efforts, no anti-viral agent is approved for the prevention or treatment of HRV-infection.

Results

In this study we demonstrate that Iota-Carrageenan, a sulphated polysaccharide derived from red seaweed, is a potent anti-rhinoviral substance in-vitro. Iota-Carrageenan reduces HRV growth and inhibits the virus induced cythopathic effect of infected HeLa cells. In addition, Iota-Carrageenan effectively prevents the replication of HRV1A, HRV2, HRV8, HRV14, HRV16, HRV83 and HRV84 in primary human nasal epithelial cells in culture. The data suggest that Iota-Carrageenan acts primarily by preventing the binding or the entry of virions into the cells.

Conclusion

Since HRV infections predominately occur in the nasal cavity and the upper respiratory tract, a targeted treatment with a product containing Iota-Carrageenan is conceivable. Clinical trials are needed to determine whether Iota-Carrageenan-based products are effective in the treatment or prophylaxis of HRV infections.  相似文献   
72.
DNA from over 300 Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis isolates was analyzed by fluorescent amplified fragment length polymorphism (AFLP). B. thuringiensis and B. cereus isolates were from diverse sources and locations, including soil, clinical isolates and food products causing diarrheal and emetic outbreaks, and type strains from the American Type Culture Collection, and over 200 B. thuringiensis isolates representing 36 serovars or subspecies were from the U.S. Department of Agriculture collection. Twenty-four diverse B. anthracis isolates were also included. Phylogenetic analysis of AFLP data revealed extensive diversity within B. thuringiensis and B. cereus compared to the monomorphic nature of B. anthracis. All of the B. anthracis strains were more closely related to each other than to any other Bacillus isolate, while B. cereus and B. thuringiensis strains populated the entire tree. Ten distinct branches were defined, with many branches containing both B. cereus and B. thuringiensis isolates. A single branch contained all the B. anthracis isolates plus an unusual B. thuringiensis isolate that is pathogenic in mice. In contrast, B. thuringiensis subsp. kurstaki (ATCC 33679) and other isolates used to prepare insecticides mapped distal to the B. anthracis isolates. The interspersion of B. cereus and B. thuringiensis isolates within the phylogenetic tree suggests that phenotypic traits used to distinguish between these two species do not reflect the genomic content of the different isolates and that horizontal gene transfer plays an important role in establishing the phenotype of each of these microbes. B. thuringiensis isolates of a particular subspecies tended to cluster together.  相似文献   
73.

Introduction

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disease with skeletal fragility and variable extra-skeletal manifestations. To date several point mutations in 18 different genes causing different types of OI have been identified. Mutations in WNT1 compromise activity of the osteoblasts leading to disturbed bone mass accrual, fragility fractures and progressive skeletal abnormalities. The present study was conducted to determine the underlying genetic cause of an autosomal recessive skeletal dysplasia in a large consanguineous family from Chinute, Pakistan.

Materials and methods

Blood was collected from 24 individuals of affected family along with clinical data. Homozygosity mapping was performed to confirm consanguinity. SNPs were identified, followed by whole exome and Sanger sequencing. In silico characterization of WNT1 mutation was performed using multiple platforms.

Results

Nine affected family members exhibited severe bone deformities, recurrent fractures, short stature and low bone mineral density. SNP array data revealed homozygous segments >?1 Mb in length accounting for 2.1–12.7% of the genome in affected individuals and their siblings and a single 6,344,821 bp homozygous region in all affected individuals on chromosome 12q12-q13. This region includes two potential OI candidate genes WNT1 and VDR. We did whole-exome sequencing for both genes in two patients and identified a novel damaging missense mutation in exon 4 of WNT1: c.1168G?>?T (NM_005430) resulting in p.G324C. Sanger sequencing confirmed segregation of mutation with the disease in family.

Conclusion

We report a novel mutation responsible for OI and our investigation expands the spectrum of disease-causing WNT1 mutations and the resulting OI phenotypes.
  相似文献   
74.
75.
Disturbances in natural Circadian rhythm are well-known stress factors, affecting a range of metabolic pathways in the living body including the brain. Hence, discovery of natural compounds that could help to prevent and cure of adverse changes is very important. One of the recently discussed substances is creatine, that is believed to have anti-stressor properties. Recent paper describes the impact of intraperitoneally injected creatine (140 mg/kg) into rats with a disturbed natural circadian rhythm for an extended period of time (30 days). Markedly, creatine-treated animals show positive changes in open-field behavioral parameters, and an increase in certain antioxidant enzymes’ (SOD, catalase) activity in the hippocampus, whereas the concentration of nitric oxide, H2O2, and Ca2+ are approximated to the control value. Similar findings were also observed in case of Na+/K+- and Ca2+-ATPases. To sum up, the recent findings allow the conclusion that oxidative stress induced by long-term disturbances in natural circadian rhythm is accompanied and likely provoked by an increase in Ca2+-cytotoxicity, which is supposedly normalized by the creatine’s indirect action on the NMDA receptor. Therefore, impact on energy mediating pathways has a positive effect on stabilization of antioxidant and various metabolic systems and protecting hippocampal cells from stress.  相似文献   
76.
This work focused on the effect triterpene derivative 24-methylen-elemo-lanosta-8,24-dien-3-one (F3) on the induction of salt stress tolerance of the Moroccan grapevine cv. “Doukkali”. Hardwood cuttings of the grapevine from a homogeneous plant material collected in the field were grown in hydroponic medium under different salt concentrations and treated with 50 or 100 µg ml?1 of F3. Salt stress affected several physiological and biochemical parameters including relative water content, chlorophyll a and b content, peroxidase, and polyphenol oxidase activities, which decreased along with time. Meanwhile, proline, proteins, soluble sugars, H2O2, and carotenoid content, as well as phenolic compound content increased, suggesting an evidence of tolerance of this local variety to salinity. An exogenous supply of the triterpenic product increased all these parameters under normal conditions. In addition, F3 at low dose was found to be successful in lowering Na+ content and alleviating the inhibitory effects of salt stress on relative water content as well as on chlorophyll a and b.  相似文献   
77.
78.
Nerve growth factor (NGF) regulates proliferation, differentiation, and survival of sympathetic and sensory neurons through the tyrosine kinase activity of its receptor, p140trk. These biological effects of NGF depend upon the signal-mediating function of p140trk substrates which are likely to differ from cell to cell. To define p140trk receptor substrates and the details of signalling by NGF in the hybrid cell PC12EN, we stably transfected cultures with a vector encoding a full-length human p140trk cDNA sequence. Two stably transfected clones, one expressing p140trk with higher affinity (PC12EN-trk3; Kd 57.4 pM, Bmax 9.7 pmole/mg) and one expressing p140trk with a lower affinity (PC12EN-trk1; Kd 392.4 pM, Bmax 5.7 pmole/mg) were generated. Radioreceptor assays indicate that transfected p140trk receptors show slow NGF-dissociation kinetics, are resistant to trypsin or Triton X-100 treatment, are specific for NGF compared to other neurotrophins, and are internalized or downregulated as are native PC12 p140trk receptors. NGF stimulates p140trk tyrosine phosphorylation in a dose- (0.01-10 ng/ml) and time- (5-120 min) dependent manner, and tyrosine phosphorylation was inhibited by 200-1,000 nM K-252a. NGF-induced Erk stimulation for 60 min was assessed using myelin basic protein as a substrate. NGF treatment also led to an increased phosphorylation of p70S6k, SNT, and phospholipase Cγ, demonstrating that the major NGF-stimulated signalling pathways found in other cells are activated in PC12EN-trk cells. Staurosporine (5-50 nM) rapidly and dBcAMP (1 mM) more slowly, but not NGF induced morphological differentiation in PC12EN-trk cells. Rather, NGF treatment in low-serum medium stimulated a 1.3- and 2.3-fold increase in DNA synthesis measured by [3H]thymidine incorporation in PC12EN-trk1 and PC12EN-trk3, respectively. These data highlight the functionality of the transfected p140trk receptors and indicate that these transfected cells may serve as a novel cellular model facilitating the study of the mitogenic properties of NGF signalling and the transducing role of the p140trk receptor substrates. J. Cell. Biochem. 66:229-244. © 1997 Wiley-Liss, Inc. This article is a U.S. Government work and, as such, is in the public domain in the United States of America.  相似文献   
79.
80.
Nanoparticle–albumin complexes are being designed for targeted drug delivery and imaging. However, the changes in the functional properties of albumin due to adsorption on nanoparticles remain elusive. Thus, the objective of this work was to elucidate the structural and functional properties of human and bovine serum albumin bound to negatively charged gold nanoparticles (GNPs). Fluorescence data demonstrated static quenching of albumin by GNP with the quenching of buried as well as surface tryptophan in BSA. The binding process was enthalpy and entropy-driven in HSA and BSA, respectively. At lower concentrations of GNP there was a higher affinity for tryptophan, whereas at higher concentrations both tryptophan and tyrosine participated in the interaction. Synchronous fluorescence spectra revealed that the microenvironment of tryptophan in HSA turned more hydrophilic upon exposure to GNP. The α-helical content of albumin was unaltered by GNP. Approximately 37 and 23% reduction in specific activity of HSA and BSA was observed due to GNP binding. In presence of warfarin and ibuprofen the binding constants of albumin–GNP complexes were altered. A very interesting observation not reported so far is the retained antioxidant activity of albumin in presence of GNP i.e. we believe that GNPs did not bind to the free sulfhydryl groups of albumin. However enhanced levels of copper binding were observed. We have also highlighted the differential response in albumin due to gold and silver nanoparticles which could be attributed to differences in the charge of the nanoparticle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号