首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   26篇
  501篇
  2021年   12篇
  2019年   5篇
  2018年   9篇
  2017年   6篇
  2016年   5篇
  2015年   12篇
  2014年   12篇
  2013年   25篇
  2012年   19篇
  2011年   21篇
  2010年   19篇
  2009年   17篇
  2008年   23篇
  2007年   24篇
  2006年   21篇
  2005年   30篇
  2004年   13篇
  2003年   18篇
  2002年   15篇
  2001年   6篇
  2000年   8篇
  1999年   10篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   10篇
  1990年   6篇
  1989年   15篇
  1988年   5篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   2篇
  1980年   3篇
  1979年   14篇
  1978年   5篇
  1977年   10篇
  1976年   8篇
  1974年   5篇
  1973年   4篇
  1967年   2篇
  1966年   8篇
  1965年   9篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
21.
Calmodulin (CaM) is a cytosolic Ca(2+) signal-transducing protein that binds and activates many different cellular enzymes with physiological relevance, including the nitric oxide synthase (NOS) isozymes. CaM consists of two globular domains joined by a central linker; each domain contains an EF hand pair. Four different mutant CaM proteins were used to investigate the role of the two CaM EF hand pairs in the binding and activation of the mammalian inducible NOS (iNOS) and the constitutive NOS (cNOS) enzymes, endothelial NOS (eNOS) and neuronal NOS (nNOS). The role of the CaM EF hand pairs in different aspects of NOS enzymatic function was monitored using three assays that monitor electron transfer within a NOS homodimer. Gel filtration studies were used to determine the effect of Ca(2+) on the dimerization of iNOS when coexpressed with CaM and the mutant CaM proteins. Gel mobility shift assays were performed to determine binding stoichiometries of CaM proteins to synthetic NOS CaM-binding domain peptides. Our results show that the N-terminal EF hand pair of CaM contains important binding and activating elements for iNOS, whereas the N-terminal EF hand pair in conjunction with the central linker region is required for cNOS enzyme binding and activation. The iNOS enzyme must be coexpressed with wild-type CaM in vitro because of its propensity to aggregate when residues of the highly hydrophobic CaM-binding domain are exposed to an aqueous environment. A possible role for iNOS aggregation in vivo is also discussed.  相似文献   
22.
As a continuation of previous research on a new series of potent and efficacious P-gp-dependent multidrug resistant (MDR) reversers with a N,N-bis(cyclohexanol)amine scaffold, we have designed and synthesized several analogs by modulation of the two aromatic moieties linked through ester functions to the N,N-bis(cyclohexanol)amine, aiming to optimize activity and to extend structure–activity relationships (SAR) within the series. This scaffold, when esterified with two different aromatic carboxylic acids, gives origin to four geometric isomers (cis/trans, trans/trans, cis/cis and trans/cis).The new compounds were tested on doxorubicin-resistant erythroleukemia K562 cells (K562/DOX) in the pirarubicin uptake assay. Most of them resulted in being potent modulators of the extrusion pump P-gp, showing potency values ([I]0.5) in the submicromolar and nanomolar range. Of these, compounds 2b, 2c, 3d, 5ad and 6d, showed excellent efficacy with a αmax close to 1. Selected compounds (2d, 3a, 3b, 5ad) were further studied to evaluate their doxorubicin cytotoxicity potentiation (RF) on doxorubicin-resistant erythroleukemia K562 cells and were found able to enhance significantly doxorubicin cytotoxicity on K562/DOX cells.The results of both pirarubicin uptake and the cytotoxicity assay, indicate that the new compounds of the series are potent P-gp-mediated MDR reversers. They present a structure with a mix of flexible and rigid moieties, a property that seems critical to allow the molecules to choose the most productive of the several binding modes possible in the transporter recognition site.In particular, compounds 5c and 5d, similar to the already reported analogous isomers 1c and 1d,29 are potent and efficacious modulators of P-gp-dependent MDR and may be promising leads for the development of MDR-reversal drugs.  相似文献   
23.
Galectin-3 protein is critical to the development of liver fibrosis because galectin-3 null mice have attenuated fibrosis after liver injury. Therefore, we examined the ability of novel complex carbohydrate galectin inhibitors to treat toxin-induced fibrosis and cirrhosis. Fibrosis was induced in rats by intraperitoneal injections with thioacetamide (TAA) and groups were treated with vehicle, GR-MD-02 (galactoarabino-rhamnogalaturonan) or GM-CT-01 (galactomannan). In initial experiments, 4 weeks of treatment with GR-MD-02 following completion of 8 weeks of TAA significantly reduced collagen content by almost 50% based on Sirius red staining. Rats were then exposed to more intense and longer TAA treatment, which included either GR-MD-02 or GM-CT-01 during weeks 8 through 11. TAA rats treated with vehicle developed extensive fibrosis and pathological stage 6 Ishak fibrosis, or cirrhosis. Treatment with either GR-MD-02 (90 mg/kg ip) or GM-CT-01 (180 mg/kg ip) given once weekly during weeks 8–11 led to marked reduction in fibrosis with reduction in portal and septal galectin-3 positive macrophages and reduction in portal pressure. Vehicle-treated animals had cirrhosis whereas in the treated animals the fibrosis stage was significantly reduced, with evidence of resolved or resolving cirrhosis and reduced portal inflammation and ballooning. In this model of toxin-induced liver fibrosis, treatment with two galectin protein inhibitors with different chemical compositions significantly reduced fibrosis, reversed cirrhosis, reduced galectin-3 expressing portal and septal macrophages, and reduced portal pressure. These findings suggest a potential role of these drugs in human liver fibrosis and cirrhosis.  相似文献   
24.
The discovery of a new series of selective and high-affinity alpha(1)-adrenoceptor (alpha(1)-AR) ligands, characterized by a 1H-pyrrolo[2,3-d]-pyrimidine-2,4(3H,7H)-dione system, is described in this paper. Some synthesized compounds, including 20, 22, and 30, displayed affinity in the nanomolar range for alpha(1)-ARs and substantial selectivity with respect to 5-HT(1A) and dopaminergic D(1) and D(2) receptors. Functional assays, performed on selected derivatives, showed antagonistic properties.  相似文献   
25.
Reverse gyrase is a unique hyperthermophile-specific DNA topoisomerase that induces positive supercoiling. It is a modular enzyme composed of a topoisomerase IA and a helicase domain, which cooperate in the ATP-dependent positive supercoiling reaction. Although its physiological function has not been determined, it can be hypothesized that, like the topoisomerase–helicase complexes found in every organism, reverse gyrase might participate in different DNA transactions mediated by multiprotein complexes. Here, we show that reverse gyrase activity is stimulated by the single-strand binding protein (SSB) from the archaeon Sulfolobus solfataricus. Using a combination of in vitro assays we analysed each step of the complex reverse gyrase reaction. SSB stimulates all the steps of the reaction: binding to DNA, DNA cleavage, strand passage and ligation. By co-immunoprecipitation of cell extracts we show that reverse gyrase and SSB assemble a complex in the presence of DNA, but do not make stable protein–protein interactions. In addition, SSB stimulates reverse gyrase positive supercoiling activity on DNA templates associated with the chromatin protein Sul7d. Furthermore, SSB enhances binding and cleavage of UV-irradiated substrates by reverse gyrase. The results shown here suggest that these functional interactions may have biological relevance and that the interplay of different DNA binding proteins might modulate reverse gyrase activity in DNA metabolic pathways.  相似文献   
26.
Insult     
INSULT, a novel method for the creation of insertions, deletions, and point mutations without subcloning, requires only one new primer per mutant, and produces circular plasmids, obviating the need for special “ultracompetent” cells. The method includes cycles of linear amplification with a thermophilic polymerase, and nick repair after each cycle with a thermophilic ligase. After production of multiple single-stranded copies of circular mutation-bearing plasmid DNA, addition of a “generic” primer followed by one or more polymerase reaction cycles generates double-stranded circular DNA bearing the desired mutation.  相似文献   
27.
Isolates of Magnaporthe grisea causing gray leaf spot on rice were collected in Argentina and analyzed for mating distribution and fertility. One hundred and twenty-five isolates of M. grisea were collected from rice plants between 2000 and 2003. Each isolate was tested for mating type through a polymerase chain reaction based assay. All M. grisea isolates from Argentina belonged to a single mating type, MAT1.1. The fertility status of isolates was determined using controlled crosses in vitro, pairing each isolate with GUY11 and KA9 (MAT1.2 standard hermaphroditic testers). Production of perithecia was scarce among isolates of the blast pathogen since a low percentage of them (7.2%) developed perithecia with only one of the fertile tester (KA9); all crosses failed with the other tester strain. Asci and ascospores were not observed. The presence of only one mating type and the absence of female fertile isolates indicate that sexual reproduction is rare or absent in M. grisea populations associated with rice in Argentina.  相似文献   
28.
29.
Cytochrome c oxidase catalyzes the reduction of oxygen to water with a concomitant conservation of energy in the form of a transmembrane proton gradient. The enzyme has a catalytic site consisting of a binuclear center of a copper ion and a heme group. The spectroscopic parameters of this center are unusual. The origin of broad electron paramagnetic resonance (EPR) signals in the oxidized state at rather low resonant field, the so-called g' = 12 signal, has been a matter of debate for over 30 years. We have studied the angular dependence of this resonance in both parallel and perpendicular mode X-band EPR in oriented multilayers containing cytochrome c oxidase to resolve the assignment. The "slow" form and compounds formed by the addition of formate and fluoride to the oxidized enzyme display these resonances, which result from transitions between states of an integer-spin multiplet arising from magnetic exchange coupling between the five unpaired electrons of high spin Fe(III) heme a(3) and the single unpaired electron of Cu(B). The first successful simulation of similar signals observed in both perpendicular and parallel mode X-band EPR spectra in frozen aqueous solution of the fluoride compound of the closely related enzyme, quinol oxidase or cytochrome bo(3), has been reported recently (Oganesyan et al., 1998, J. Am. Chem. Soc. 120:4232-4233). This suggested that the exchange interaction between the two metal ions of the binuclear center is very weak (|J| approximately 1 cm(-1)), with the axial zero-field splitting (D approximately 5 cm(-1)) of the high-spin heme dominating the form of the ground state. We show that this model accounts well for the angular dependences of the X-band EPR spectra in both perpendicular and parallel modes of oriented multilayers of cytochrome c oxidase derivatives and that the experimental results are inconsistent with earlier schemes that use exchange coupling parameters of several hundred wavenumbers.  相似文献   
30.
The interactions of neuronal nitric-oxide synthase (nNOS) with calmodulin (CaM) and mutant forms of CaM, including CaM-troponin C chimeras, have been previously reported, but there has been no comparable investigation of CaM interactions with the other constitutively expressed NOS (cNOS), endothelial NOS (eNOS), or the inducible isoform (iNOS). The present study was designed to evaluate the role of the four CaM EF hands in the activation of eNOS and iNOS. To assess the role of CaM regions on aspects of enzymatic function, three distinct activities associated with NOS were measured: NADPH oxidation, cytochrome c reduction, and nitric oxide (*NO) generation as assessed by the oxyhemoglobin capture assay. CaM activates the cNOS enzymes by a mechanism other than stimulating electron transfer into the oxygenase domain. Interactions with the reductase moiety are dominant in cNOS activation, and EF hand 1 is critical for activation of both nNOS and eNOS. Although the activation patterns for nNOS and eNOS are clearly related, effects of the chimeras on all the reactions are not equivalent. We propose that cytochrome c reduction is a measure of the release of the FMN domain from the reductase complex. In contrast, cytochrome c reduction by iNOS is readily activated by each of the chimeras examined here and may be constitutive. Each of the chimeras were co-expressed with the human iNOS enzyme in Escherichia coli and subsequently purified. Domains 2 and 3 of CaM contain important elements required for the Ca2+/CaM independence of *NO production by the iNOS enzyme. The disparity between cytochrome c reduction and *NO production at low calcium can be attributed to poor association of heme and FMN domains when the bound CaM constructs are depleted of Ca2+. In general cNOSs are much more difficult to activate than iNOS, which can be attributed to their extra sequence elements, which are adjacent to the CaM-binding site and associated with CaM control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号