首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38396篇
  免费   2481篇
  国内免费   15篇
  40892篇
  2023年   224篇
  2022年   520篇
  2021年   907篇
  2020年   518篇
  2019年   673篇
  2018年   939篇
  2017年   784篇
  2016年   1316篇
  2015年   1993篇
  2014年   2137篇
  2013年   2928篇
  2012年   3351篇
  2011年   3191篇
  2010年   1949篇
  2009年   1680篇
  2008年   2383篇
  2007年   2314篇
  2006年   2054篇
  2005年   1851篇
  2004年   1739篇
  2003年   1678篇
  2002年   1514篇
  2001年   306篇
  2000年   208篇
  1999年   296篇
  1998年   379篇
  1997年   254篇
  1996年   251篇
  1995年   230篇
  1994年   224篇
  1993年   219篇
  1992年   134篇
  1991年   144篇
  1990年   147篇
  1989年   109篇
  1988年   100篇
  1987年   90篇
  1986年   70篇
  1985年   95篇
  1984年   95篇
  1983年   71篇
  1982年   83篇
  1981年   80篇
  1980年   79篇
  1979年   72篇
  1978年   39篇
  1977年   50篇
  1976年   36篇
  1975年   38篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
101.
Vanadium uptake by whole cells and isolated cell walls of the yeast Saccharomyces cerevisiae was studied. When orthovanadate was added to wild-type S. cerevisiae cells growing in rich medium, growth was inhibited as a function of the VO4 3- concentration and the growth was completely arrested at a concentration of 20 mM of VO4 3- in YEPD. Electron paramagnetic resonance (EPR) spectroscopy was used to obtain structural and dynamic information about the cell-associated paramagnetic vanadyl ion. The presence of EPR signals indicated that vanadate was reduced by whole cells to the vanadyl ion. On the contrary, no EPR signals were detected after interaction of vanadate with isolated cell walls. A mobile and an immobile species associated in cells with small chelates and with macromolecular sites, respectively, were identified. The value of rotational correlation time r indicated the relative motional freedom at the macromolecular site. A strongly immobilized vanadyl species bound to polar sites mainly through coulombic attractions was detected after interaction of VO2+ ions with isolated cell walls.  相似文献   
102.

Background

The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.

Methodology/Principal Findings

We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepitelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.

Conclusion/Significance

Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.  相似文献   
103.
The secretion of angiogenic factors by vascular endothelial cells is one of the key mechanisms of angiogenesis. Here we report on the isolation of a new potent angiogenic factor, diuridine tetraphosphate (Up4U) from the secretome of human endothelial cells. The angiogenic effect of the endothelial secretome was partially reduced after incubation with alkaline phosphatase and abolished in the presence of suramin. In one fraction, purified to homogeneity by reversed phase and affinity chromatography, Up4U was identified by MALDI-LIFT-fragment-mass-spectrometry, enzymatic cleavage analysis and retention-time comparison. Beside a strong angiogenic effect on the yolk sac membrane and the developing rat embryo itself, Up4U increased the proliferation rate of endothelial cells and, in the presence of PDGF, of vascular smooth muscle cells. Up4U stimulated the migration rate of endothelial cells via P2Y2-receptors, increased the ability of endothelial cells to form capillary-like tubes and acts as a potent inducer of sprouting angiogenesis originating from gel-embedded EC spheroids. Endothelial cells released Up4U after stimulation with shear stress. Mean total plasma Up4U concentrations of healthy subjects (N = 6) were sufficient to induce angiogenic and proliferative effects (1.34±0.26 nmol L-1). In conclusion, Up4U is a novel strong human endothelium-derived angiogenic factor.  相似文献   
104.
Photodynamic therapy (PDT) leads to production of reactive oxygen species (ROS) and cell destruction due to oxidative stress. We used photodynamic effect of photosensitizer radachlorin to unravel the effect of photo-induced oxidative stress on the calcium signal and lipid peroxidation in primary culture of cortical neurons and astrocytes using live cell imaging. We have found that irradiation in presence of 200 nM of radachlorin induces calcium signal in primary neurons and astrocytes. Photo-induced neuronal calcium signal depends on internal calcium stores as it was still observed in calcium-free medium and could be blocked by depletion of endoplasmic reticulum (ER) stores with inhibitor of sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) thapsigargin. Both inhibitors of phospholipase C activity U73122 and water-soluble analogue of vitamin E Trolox suppressed calcium response activated by PDT. We have also observed that the photodynamic effect of radachlorin induces lipid peroxidation in neurons and astrocytes. This data demonstrate that lipid peroxidation induced by PDT in neurons and astrocytes leads to activation of phospholipase C that results in production of inositol 1,4,5-trisphosphate (IP3).  相似文献   
105.
This study examines the importance of N source and concentration on plant response to distinct CO2 concentrations and root temperatures. The experimental design of this work was a factorial combination of: CO2 concentration, nitrogen concentration, nitrogen source and root temperature. Carob (Ceratonia siliqua L.) was assessed as a potential model of a slow growing Mediterranean species.

The results showed that: 1) biomass increment under high CO2 varied between 13 and 100 percnt; in relation to plants grown under the same conditions but at ambient CO2 concentrations, depending on the root temperature and nitrogen source; 2) nitrate-fed plants attained a larger increase in biomass production compared to ammonium-fed ones. This performance seems to be linked to the co-ordinated regulation of the activities of glutamine synthetase and sucrose phosphate synthase. The variations in the magnitude and nature of growth responses to elevated CO2 observed resulted in substantial changes in the chemical composition of the plant material and consequently in plant nitrogen use efficiency.

Although performed with seedlings and under controlled conditions, this work emphasizes the importance of the nitrogen source used by the plants, a factor rarely taken into consideration when forecasting plant responses to global changes. Particularly, the results presented here, highlight the potential for uncoupling biomass accumulation from increment of air CO2 concentration and show that more than nitrogen availability N source may offset positive plant growth responses under elevated CO2 and root temperature.  相似文献   

106.
Human cytomegalovirus (CMV) infection of the developing fetus can result in adverse pregnancy outcomes including death in utero. Fetal injury results from direct viral cytopathic damage to the CMV-infected fetus, although evidence suggests CMV placental infection may indirectly cause injury to the fetus, possibly via immune dysregulation with placental dysfunction. This study investigated the effects of CMV infection on expression of the chemokine MCP-1 (CCL2) and cytokine TNF-α in placentae from naturally infected stillborn babies, and compared these changes with those found in placental villous explant histocultures acutely infected with CMV ex vivo. Tissue cytokine protein levels were assessed using quantitative immunohistochemistry. CMV-infected placentae from stillborn babies had significantly elevated MCP-1 and TNF-α levels compared with uninfected placentae (p = 0.001 and p = 0.007), which was not observed in placentae infected with other microorganisms (p = 0.62 and p = 0.71) (n = 7 per group). Modelling acute clinical infection using ex vivo placental explant histocultures showed infection with CMV laboratory strain AD169 (0.2 pfu/ml) caused significantly elevated expression of MCP-1 and TNF-α compared with uninfected explants (p = 0.0003 and p<0.0001) (n = 25 per group). Explant infection with wild-type Merlin at a tenfold lower multiplicity of infection (0.02 pfu/ml), caused a significant positive correlation between increased explant infection and upregulation of MCP-1 and TNF-α expression (p = 0.0001 and p = 0.017). Cytokine dysregulation has been associated with adverse outcomes of pregnancy, and can negatively affect placental development and function. These novel findings demonstrate CMV infection modulates the placental immune environment in vivo and in a multicellular ex vivo model, suggesting CMV-induced cytokine modulation as a potential initiator and/or exacerbator of placental and fetal injury.  相似文献   
107.
108.
Several approaches have been proposed to assess impacts on natural assemblages. Ideally, the potentially impacted site and multiple reference sites are sampled through time, before and after the impact. Often, however, the lack of information regarding the potential overall impact, the lack of knowledge about the environment in many regions worldwide, budgets constraints and the increasing dimensions of human activities compromise the reliability of the impact assessment. We evaluated the impact, if any, and its extent of a nuclear power plant effluent on sessile epibiota assemblages using a suitable and feasible sampling design with no ‘before’ data and budget and logistic constraints. Assemblages were sampled at multiple times and at increasing distances from the point of the discharge of the effluent. There was a clear and localized effect of the power plant effluent (up to 100 m from the point of the discharge). However, depending on the time of the year, the impact reaches up to 600 m. We found a significantly lower richness of taxa in the Effluent site when compared to other sites. Furthermore, at all times, the variability of assemblages near the discharge was also smaller than in other sites. Although the sampling design used here (in particular the number of replicates) did not allow an unambiguously evaluation of the full extent of the impact in relation to its intensity and temporal variability, the multiple temporal and spatial scales used allowed the detection of some differences in the intensity of the impact, depending on the time of sampling. Our findings greatly contribute to increase the knowledge on the effects of multiple stressors caused by the effluent of a power plant and also have important implications for management strategies and conservation ecology, in general.  相似文献   
109.
The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs) is the key step for the onset and progression of cardiovascular diseases (CVD), therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP), while the mitochondrial membrane potential (MMP) was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号