首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107211篇
  免费   7236篇
  国内免费   27篇
  2023年   559篇
  2022年   921篇
  2021年   2073篇
  2020年   1412篇
  2019年   1795篇
  2018年   2722篇
  2017年   2324篇
  2016年   3509篇
  2015年   4947篇
  2014年   5260篇
  2013年   6982篇
  2012年   8060篇
  2011年   7673篇
  2010年   4874篇
  2009年   4240篇
  2008年   5878篇
  2007年   5775篇
  2006年   5372篇
  2005年   4647篇
  2004年   4547篇
  2003年   4172篇
  2002年   3850篇
  2001年   2069篇
  2000年   1876篇
  1999年   1663篇
  1998年   1092篇
  1997年   796篇
  1996年   767篇
  1995年   731篇
  1994年   630篇
  1993年   594篇
  1992年   924篇
  1991年   881篇
  1990年   820篇
  1989年   767篇
  1988年   686篇
  1987年   675篇
  1986年   597篇
  1985年   605篇
  1984年   511篇
  1983年   456篇
  1982年   386篇
  1981年   328篇
  1980年   314篇
  1979年   471篇
  1978年   311篇
  1975年   295篇
  1974年   340篇
  1973年   355篇
  1972年   310篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
63.
64.
Aim The geological evolution of the Mediterranean region is largely the result of the Tertiary collision of the African and Eurasian Plates, but also a mosaic of migrating island arcs, fragmenting tectonic belts, and extending back‐arc basins. Such complex paleogeography has resulted in a ‘reticulate’ biogeographical history, in which Mediterranean biotas repeatedly fragmented and merged as dispersal barriers appeared and disappeared through time. In this study, dispersal‐vicariance analysis (DIVA) is used to assess the relative role played by dispersal and vicariance in shaping distribution patterns in the beetle subfamily Pachydeminae Reitter, 1902 (Scarabaeoidea), an example of east–west Mediterranean disjunction. Location The Mediterranean region, including North Africa, the western Mediterranean, Balkans–Anatolia, Middle East, Caucasus, the Iranian Plateau, and Central Asia. Methods A phylogenetic hypothesis of the Palearctic genera of Pachydeminae in conjunction with distributional data was analysed using DIVA. This method reconstructs the ancestral distribution in a given phylogeny based on the vicariance model, while allowing dispersal and extinction to occur. Unlike other methods, DIVA does not enforce area relationships to conform to a hierarchical ‘area cladogram’, so it can be used to reconstruct ‘reticulate’ biogeographical scenarios. Results Optimal reconstructions, requiring 23 dispersal events, suggest that the ancestor of Pachydeminae was originally present in the south‐east Mediterranean region. Basal splitting within the subfamily was caused by vicariance events related to the late Tertiary collision of the African microplates Apulia and Arabia with Eurasia, and the resultant arise of successive dispersal barriers (e.g. the Red Sea, the Zagros Mountains). Subsequent diversification in Pachydeminae involved multiple speciation events within the Middle East and Iran–Afghanistan regions, which gave rise to the least speciose genera of Pachydeminae (e.g. Otoclinius Brenske, 1896). Finally, the presence of Pachydeminae in the western Mediterranean region seems to be the result of a recent dispersal event. The ancestor of the Iberian genera Ceramida Baraud, 1987 and Elaphocera Gené, 1836 probably dispersed from the Middle East to the Iberian Peninsula across North Africa and the Gibraltar Strait during the ‘Messinian salinity crisis’ at the end of the Miocene. Main conclusions Although the basal diversification of Pachydeminae around the Mediterranean appears to be related to vicariance events linked to the geological formation of the Mediterranean Basin, dispersal has also played a very important role. Nearly 38% of the speciation events in the phylogeny resulted from dispersal to a new area followed by allopatric speciation between lineages. Relationships between western and eastern Mediterranean disjuncts are usually explained by dispersal through Central Europe. The biogeographical history of the Pachydeminae corroborates other biogeographical studies that consider North Africa to be an alternative dispersal route by which Mediterranean taxa could have achieved circum‐Mediterranean distributions.  相似文献   
65.
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors'' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants'' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens.  相似文献   
66.
67.
Journal of Physiology and Biochemistry - Infants born small for gestational age (SGA) are at increased risk of perinatal morbidity, persistent short stature, and metabolic alterations in later...  相似文献   
68.
ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an appropriate molecular template for the construction of an efficient anti-infective agent.  相似文献   
69.
70.
Carbonic anhydrases (CAs) are a family of widely distributed metalloenzymes, involved in diverse physiological processes. These enzymes catalyse the reversible conversion of carbon dioxide to protons and bicarbonate. At least 19 genes encoding for CAs have been identified in the sea urchin genome, with one of these localized to the skeletogenic mesoderm (primary mesenchyme cells, PMCs). We investigated the effects of a specific inhibitor of CA, acetazolamide (AZ), on development of two sea urchin species with contrasting investment in skeleton production, Paracentrotus lividus and Heliocidaris tuberculata, to determine the role of CA on PMC differentiation, skeletogenesis and on non‐skeletogenic mesodermal (NSM) cells. Embryos were cultured in the presence of AZ from the blastula stage prior to skeleton formation and development to the larval stage was monitored. At the dose of 8 mmol/L AZ, 98% and 90% of P. lividus and H. tuberculata embryos lacked skeleton, respectively. Nevertheless, an almost normal PMC differentiation was indicated by the expression of msp130, a PMC‐specific marker. Strikingly, the AZ‐treated embryos also lacked the echinochrome pigment produced by the pigment cells, a subpopulation of NSM cells with immune activities within the larva. Conversely, all ectoderm and endoderm derivatives and other subpopulations of mesoderm developed normally. The inhibitory effects of AZ were completely reversed after removal of the inhibitor from the medium. Our data, together with new information concerning the involvement of CA on skeleton formation, provide evidence for the first time of a possible role of the CAs in larval immune pigment cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号