首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138377篇
  免费   3384篇
  国内免费   828篇
  2023年   247篇
  2022年   553篇
  2021年   1126篇
  2020年   670篇
  2019年   875篇
  2018年   12706篇
  2017年   11329篇
  2016年   8899篇
  2015年   3043篇
  2014年   2908篇
  2013年   3871篇
  2012年   8162篇
  2011年   16391篇
  2010年   14126篇
  2009年   10126篇
  2008年   12408篇
  2007年   13908篇
  2006年   2830篇
  2005年   2765篇
  2004年   3094篇
  2003年   3065篇
  2002年   2643篇
  2001年   694篇
  2000年   489篇
  1999年   424篇
  1998年   474篇
  1997年   349篇
  1996年   335篇
  1995年   299篇
  1994年   275篇
  1993年   299篇
  1992年   220篇
  1991年   229篇
  1990年   203篇
  1989年   153篇
  1988年   140篇
  1987年   130篇
  1986年   106篇
  1985年   133篇
  1984年   136篇
  1983年   107篇
  1982年   109篇
  1981年   106篇
  1980年   95篇
  1979年   96篇
  1977年   64篇
  1975年   61篇
  1973年   54篇
  1972年   284篇
  1971年   301篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
Biomechanics and Modeling in Mechanobiology - The load distribution among lumbar spinal structures—still an unanswered question—has been in the focus of this hybrid experimental and...  相似文献   
992.
Eggplant (Solanum melongena L.) yield is highly sensitive to N fertilization, the excessive use of which is responsible for environmental and human health damage. Lowering N input together with the selection of improved Nitrogen‐Use‐Efficiency (NUE) genotypes, more able to uptake, utilize, and remobilize N available in soils, can be challenging to maintain high crop yields in a sustainable agriculture. The aim of this study was to explore the natural variation among eggplant accessions from different origins, in response to Low (LN) and High (HN) Nitrate (NO3) supply, to identify NUE‐contrasting genotypes and their NUE‐related traits, in hydroponic and greenhouse pot experiments. Two eggplants, AM222 and AM22, were identified as N‐use efficient and inefficient, respectively, in hydroponic, and these results were confirmed in a pot experiment, when crop yield was also evaluated. Overall, our results indicated the key role of N‐utilization component (NUtE) to confer high NUE. The remobilization of N from leaves to fruits may be a strategy to enhance NUtE, suggesting glutamate synthase as a key enzyme. Further, omics technologies will be used for focusing on C‐N metabolism interacting networks. The availability of RILs from two other selected NUE‐contrasting genotypes will allow us to detect major genes/quantitative trait loci related to NUE.  相似文献   
993.
Regenerative therapies including stem cell treatments hold promise to allow curing patients affected by severe cardiac muscle diseases. However, the clinical efficacy of stem cell therapy remains elusive, so far. The two key roadblocks that still need to be overcome are the poor cell engraftment into the injured myocardium and the limited knowledge of the ideal mixture of bioactive factors to be locally delivered for restoring heart function. Thus, therapeutic strategies for cardiac repair are directed to increase the retention and functional integration of transplanted cells in the damaged myocardium or to enhance the endogenous repair mechanisms through cell-free therapies. In this context, biomaterial-based technologies and tissue engineering approaches have the potential to dramatically impact cardiac translational medicine. This review intends to offer some consideration on the cell-based and cell-free cardiac therapies, their limitations and the possible future developments.  相似文献   
994.
995.
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC‐CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC‐CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC‐CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro‐angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC‐CM versus serum control, the ratio between collagen III and I mRNAs increased by 2‐fold. Furthermore, the gene expression for α‐smooth muscle actin, tissue inhibitor of metalloproteinase‐1 and 2 and matrix metalloproteinase‐14 was significantly increased by approximately 2‐fold. In conclusion, factors existing in MSC‐CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro‐healing phenotype in fibroblasts.  相似文献   
996.
Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α‐amyrin, 1‐dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p‐coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1‐dehydrodiosgenone, tricin, and p‐coumaric acid are also reported, and p‐coumaric acid and 1‐dehydrodiosgenone were active against B. pilosa.  相似文献   
997.
998.
999.
1000.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号