首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4077篇
  免费   326篇
  国内免费   1篇
  4404篇
  2023年   10篇
  2022年   26篇
  2021年   60篇
  2020年   38篇
  2019年   58篇
  2018年   77篇
  2017年   66篇
  2016年   97篇
  2015年   149篇
  2014年   167篇
  2013年   219篇
  2012年   290篇
  2011年   302篇
  2010年   166篇
  2009年   139篇
  2008年   236篇
  2007年   226篇
  2006年   228篇
  2005年   187篇
  2004年   193篇
  2003年   173篇
  2002年   167篇
  2001年   97篇
  2000年   98篇
  1999年   87篇
  1998年   75篇
  1997年   47篇
  1996年   44篇
  1995年   60篇
  1994年   33篇
  1993年   32篇
  1992年   60篇
  1991年   62篇
  1990年   43篇
  1989年   51篇
  1988年   31篇
  1987年   31篇
  1986年   20篇
  1985年   27篇
  1984年   26篇
  1983年   23篇
  1982年   16篇
  1981年   16篇
  1979年   17篇
  1978年   17篇
  1977年   14篇
  1976年   17篇
  1975年   11篇
  1973年   15篇
  1971年   14篇
排序方式: 共有4404条查询结果,搜索用时 15 毫秒
41.
S Uzawa  I Samejima  T Hirano  K Tanaka  M Yanagida 《Cell》1990,62(5):913-925
Mutations in the fission yeast cut1+, cut2+, and cut10+ genes uncouple normally coordinated mitotic events and deregulate, rather than arrest, mitosis. DNA synthesis continues, making polyploid nuclei with several spindles. Multiple, aberrant spindle pole bodies (SPBs) are produced in cut1 mutant cells. The cut1+ and cut2+ genes are cloned by transformation. High gene dosage of cut1+ also complements cut2 and cut10 mutants. The cut2+ gene, however, complements only cut2. The 210 kd cut1+ gene product contains putative ATP binding and helical coil regions followed by a COOH-terminal domain homologous to the S. cerevisiae gene ESP1. Mutations in the ESP1 gene also result in many SPBs. The cut1+ product is shown by anti-cut1 antibody to be a rare component of the insoluble nuclear fraction. It may play a key role in coupling chromosome disjunction with other cell cycle events and is potentially a component, regulator, or motor for the SPB and/or kinetochores.  相似文献   
42.
Hydrolysis by endothelial lipases of triacylglycerol-rich lipoproteins of diabetic origin were compared to lipoproteins of non-diabetic origin. The plasma lipoprotein fraction of density < 1.006 g/ml, including chylomicrons and VLDL, were incubated in vitro with post-heparin plasma (PHP) lipases. The lipoproteins of diabetic origin were hydrolysed at a significantly slower rate than lipoproteins from normal rats by the lipoprotein lipase component of PHP. However, if rats were fasted for 16 h prior to lipoprotein recovery, no differences in rates of VLDL hydrolysis were observed. Slower hydrolysis of lipoproteins of diabetic origin reflected a decrease in the apolipoprotein CII/CIII ratio and other changes in the apolipoprotein profile. To assess whether diabetic rats were less able to clear triacylglycerol independent of changes in the nature of the lipoproteins, we monitored the clearance of chylomicron-like lipid emulsions in hepatectomized rats. In vivo, emulsion triacylglycerol hydrolysis was not slowed due to diabetes. However, control and diabetic rats, which had been fasted for 16 h, cleared triacylglycerol at about twice the rate of fed rats. Triacylglycerol secretion rates in diabetic and control rats were similar, whether fed or fasted. We conclude that in streptozocin diabetic rats, hypertriglyceridemia was not due to overproduction of chylomicron- or VLDL-triacylglycerol, nor to decreased endothelial lipase activities. Rather, in fed diabetic rats, the triacylglycerol-rich lipoproteins are poorer substrates for lipoprotein lipase. This may lead to slower formation of remnants which would exacerbate slow remnant removal. VLDL of diabetic origin were hydrolysed as efficiently as VLDL from control donors, suggesting that in the fed state the lipolytic defect may be specific for chylomicrons.  相似文献   
43.
Abstract: Under typical culture conditions, cerebellar granule cells die abruptly after 17 days in vitro. This burst of neuronal death involves ultrastructural changes and internucleosomal DNA fragmentations characteristic of apoptosis and is effectively arrested by pretreatment with actinomycin-D and cycloheximide. The level of a 38-kDa protein in the particulate fraction is markedly increased during age-induced cell death and by pretreatment with NMDA, which potentiates this cell death. Conversely, the age-induced increment of the 38-kDa particulate protein is suppressed by actinomycin-D and cycloheximide. N-terminal microsequencing of the 38-kDa protein revealed sequence identity with glyceraldehyde-3-phosphate dehydrogenase (GAPDH). A GAPDH antisense oligodeoxyribonucleotide blocks age-induced expression of the particulate 38-kDa protein and effectively inhibits neuronal apoptosis. In contrast, the corresponding sense oligonucleotide of GAPDH was completely ineffective in preventing the age-induced neuronal death and the 38-kDa protein overexpression. Moreover, the age-induced expression of the 38-kDa protein is preceded by a pronounced increase in the GAPDH mRNA level, which is abolished by actinomycin-D, cycloheximide, or the GAPDH antisense, but not sense, oligonucleotide. Thus, our results suggest that overexpression of GAPDH in the particulate fraction has a direct role in age-induced apoptosis of cerebellar neurons.  相似文献   
44.
To identify the type of Verotoxins (VT) produced by Verocytotoxin-producing Escherichia coli (VTEC), a sensitive bead-enzyme-linked immunosorbent assay and polymerase chain reaction with common and specific primers to various VTs (VT1, VT2, VT2vha, VT2vhb, and VT2vp1) were developed. Together with colony hybridization tests with oligo- and polynucleotide probes, these methods were applied to VTEC isolates to type the VT produced. The toxin types of 26 of 37 strains were identified, but the reaction profiles in assays of the remaining 11 strains suggested the existence of new VT2 variants. The application of these identification procedures may be useful as a tool for clinical and epidemiological studies of VTEC infection.  相似文献   
45.
46.
Previous studies have suggested that the two subunits of phosphatidylinositol (PI) 3-kinase, p85 and p110, function as localizing and catalytic subunits, respectively. Using recombinant p85 and p110 molecules, we have reconstituted the specific interaction between the two subunits of mouse PI 3-kinase in cells and in vitro. We have previously shown that the region between the two Src homology 2 (SH2) domains of p85 is able to form a functional complex with the 110-kDa subunit in vivo. In this report, we identify the corresponding domain in p110 which directs the binding to p85. We demonstrate that the interactive domains in p85 and p110 are less than 103 and 124 amino acids, respectively, in size. We also show that the association of p85 and p110 mediated by these domains is critical for PI 3-kinase activity. Surprisingly, a complex between a 102-amino-acid segment of p85 and the full-length p110 molecule is catalytically active, whereas p110 alone has no activity. In addition to the catalytic domain in the carboxy-terminal region, 123 amino acids at the amino terminus of p110 were required for catalytic activity and were sufficient for the interaction with p85. These results indicate that the 85-kDa subunit, previously thought to have only a linking role in localizing the p110 catalytic subunit, is an important component of the catalytic complex.  相似文献   
47.
The conformation and dilute solution properties of (2→1)-β-d-fructan in aqueous solution were studied by gel permeation chromatography, low-angle laser light-scattering photometry, viscometry, small-angle X-ray scattering and electron microscopy. Fractions covering a broad range of weight-average molecular weights (Mw) from 1.49 × 104 to 5.29 × 106 were obtained from a native sample by ultrasonic degradation and fractional precipitation. For Mw < 4 × 104, the intrinsic viscosity [η] varies with Mw0.71, indicating that the fructan chain behaves as a random coil expanded by an excluded-volume effect in this molecular weight region. For Mw > 105, [η] exhibits an unusually weak dependence on Mw and finally becomes almost independent of molecular weight. This behaviour is interpreted in terms of a globular conformation of the high-molecular-weight fructan molecules. Small-angle X-ray-scattering measurements and electron microscopic observations support this interpretation of the values of [η] observed.  相似文献   
48.
Abstract: The effects of α-sialosylcholesterol (α-SC) on formation of either microfilament or glia filament of rat astrocytes were investigated using a reconstitution system. Polymerization of the depolymerized microfilament preparation that had been extracted from a crude cytoskeletal fraction of rat astrocytes, in the presence of 100 m M KCI and 10 m M MgCI2, was suppressed in a dose-dependent manner by α-SC. α-SC inhibited polymerization of G-actin in a similar manner. The intensity of a-SC inhibition of G- actin polymerization was as great as that of microfilament polymerization, suggesting that the inhibition of microfilament polymerization by α-SC was due to the direct action of α-SC on actin, the main component of microfilament. α-SC depolymerized partly the polymerized microfilament preparation, which resembled F-actin (microfilament-like filaments). α-SC suppressed, in a dose-dependent manner, polymerization of a glia filament preparation that had been extracted from astrocyte cytoskeletons in the presence of phalloidin. An increase in the amount of added α-SC (up to 15 n M ) decreased the amount of the larger glia filament-like filaments, which were 10 nm thick and centrifuged down at 16,000 g for 30 min, and increased that of smaller ones precipitated only after centrifugation at 100,000 g for 1 h. The lower the concentration of the depolymerized glia filament extract, the greater was the inhibition by α-SC of the polymerization. α-SC repressed polymerization of vimentin, the dominant component of glia filament. Vimentin polymerization was more strongly inhibited by α-SC than polymerization of glia filament was. The findings suggested that α-SC suppressed polymerization of glia filament through a direct action on vimentin and that the glia filament-associated proteins increased its structural stability in the presence of α-SC.  相似文献   
49.
In suspension cultures of Phytolacca americana , betacyanin accumulation was reduced when cell division was inhibited by treatment with various inhibitors of DNA synthesis or anti-microtubule drugs. Aphidicolin (APC), an inhibitor of DNA synthesis, reduced the incorporation of radioactivity from labeled tyrosine into betacyanin, but the incorporation of radioactivity from labeled 3,4-dihydroxyphenylalanine (DOPA) into betacyanin was not affected by similar treatments. Propyzamide, another anti-microtubule drug, reduced incorporation of radioactivity from tyrosine and DOPA into betacyanin. However, the rate of incorporation from DOPA was higher than that from tyrosine. The results suggest that inhibition of betacyanin accumulation in Phytolacca americana cells by APC and propyzamide is due to suppression of the reaction converting tyrosine to DOPA, which may be closely related to cell division.  相似文献   
50.
Summary The nrtA gene, which has been proposed to be involved in nitrate transport of Synechococcus sp. PCC7942 (Anacystis nidulans R2), was mapped at 3.9 kb upstream of the nitrate reductase gene, narB. Three closely linked genes (designated nrtB, nrtC, and nrtD), which encode proteins of 279, 659, and 274 amino acids, respectively, were found between the nrtA and narB genes. NrtB is a hydrophobic protein having structural similarity to the integral membrane components of bacterial transport systems that are dependent on periplasmic substrate-binding proteins. The N-terminal portion of NrtC (amino acid residues 1–254) and NrtD are 58% identical to each other in their amino acid sequences, and resemble the ATP-binding components of binding protein-dependent transport systems. The C-terminal portion of NrtC is 30% identical to NrtA. Mutants constructed by interrupting each of nrtB and nrtC were unable to grow on nitrate, and the nrtD mutant required high concentration of nitrate for growth. The rate of nitrate-dependent O2 evolution (photosynthetic O2 evolution coupled to nitrate reduction) in wild-type cells measured in the presence of l-methionine d,l-sulfoximine and glycolaldehyde showed a dual-phase relationship with nitrate concentration. It followed saturation kinetics up to 10 mM nitrate (the concentration required for half-saturation = 1 M), and the reaction rate then increased above the saturation level of the first phase as the nitrate concentration increased. The high-affinity phase of nitrate-dependent O2 evolution was absent in the nrtD mutant. The results suggest that there are two independent mechanisms of nitrate uptake and that the nrtB-nrtC-nrtD cluster encodes a high-affinity nitrate transport system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号