首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   19篇
  2024年   2篇
  2018年   3篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   9篇
  2012年   27篇
  2011年   24篇
  2010年   17篇
  2009年   9篇
  2008年   7篇
  2007年   14篇
  2006年   12篇
  2005年   17篇
  2004年   13篇
  2003年   7篇
  2002年   10篇
  2000年   2篇
  1999年   4篇
  1998年   5篇
  1997年   5篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1961年   3篇
  1956年   1篇
  1937年   2篇
排序方式: 共有260条查询结果,搜索用时 31 毫秒
91.
A large majority of tumors of the reproductive system express the gonadotropin releasing hormone receptor (GnRHR). Blockade and activation of this receptor with various antagonistic and agonistic analogues of native GnRH-I (pGlu(1)-His(2)-Trp(3)-Ser(4)-Tyr(5)-Gly (6)-Leu(7)-Arg(8)-Pro(9)-Gly(10)-NH2), respectively, has shown efficient suppression of tumor growth. In this study, the GnRH-receptor system has been evaluated with respect to its suitability as a target for in vivo peptide receptor targeting using radiolabeled GnRH-analogues, and in parallel, new (18)F- and (68Ga)-labeled GnRH analogues have been developed. In vitro radioligand binding assays performed with various GnRHR-expressing human cell lines using [(125)I]Triptorelin (D-Trp(6)-GnRH-I) as the standard radioligand revealed a very low level of GnRH receptor expression on the cell surface. Generally, total cellular activity was very low (approximately 3% of the applied activity), and only a small fraction (max. 40%) of cell-associated activity could be attributed to receptor-specific radioligand binding/internalization. However, substitution of fetal calf serum by NU serum in the culture medium led to increased and stable GnRHR-expression, especially in the ovarian cancer cell line EFO-27, thus allowing for a stable experimental setup for the evaluation of the new radiolabeled GnRH-I analogues. The new radiolabeled GnRH-I analogues developed in this study were all based on the D-Lys(6)-GnRH-I-scaffold. For (68)Ga-labeling, the latter was coupled with DOTA at D-Lys(6). To allow (18)F-labeling via chemoselective oxime formation, D-Lys(6)-GnRH-I was also conjugated with Ahx (aminohexanoic acid) or beta-Ala, which in turn was coupled with Boc-aminooxyacetic acid. (18)F-labeling via oxime formation with 4-[(18)F]fluorobenzaldehyde was performed using the Boc-protected precursors. Receptor affinities of [(68)Ga]DOTA-GnRH-I, D-Lys(6)-Ahx([(18)F]FBOA)-GnRH-I, and D-Lys(6)-betaAla([(18)F]FBOA)-GnRH-I (FBOA = fluorobenzyloxime acetyl) were determined using GnRHR-membrane preparations, and internalization efficiency of the new radioligands was determined in EFO-27 cells. Both quantities were highest for D-Lys(6)-Ahx([(18)F]FBOA)-GnRH-I (IC 50 = 0.50 +/- 0.08 nM vs 0.13 +/- 0.08 nM for Triptorelin; internalization: 86 +/- 16% of the internal reference [(125)I]Triptorelin), already substantially reduced in the case of the -betaAla([(18)F]FBOA)-derivative (IC 50 = 0.86 +/- 0.13 nM; internalization: 42 +/- 3% of [(125)I]Triptorelin), while the [(68)Ga]DOTA-analogue showed almost complete loss of binding affinity and ligand internalization (IC50 = 13.3 +/- 1.0 nM; internalization: 2.6 +/- 1.0% of [(125)I]Triptorelin). Generally, the lipophilic residue [(18)F]FBOA is much better tolerated as a modification of the D-Lys(6)-side chain, with receptor affinity of the respective analogues strongly depending upon spacer length between the D-Lys(6)-side chain and the [(18)F]FBOA-moiety. In summary, D-Lys(6)(Ahx-[(18)F]FBOA)-GnRH-I shows the highest potential for efficient GnRHR-targeting in vivo of the compounds investigated. Unfortunately, however, the very low cell surface expression of GnRH-receptors and thus very low radioligand uptake by GnRHR-positive tumor cells found in vitro was also confirmed by a preliminary biodistribution study in OVCAR-3 xenografted nude mice using the standard GnRHR radioligand [(125)I]Triptorelin. Tumor uptake was lower than blood activity concentration at 1 h p.i. (0.49 +/- 0.05 vs 0.96 +/- 0.13 for tumor and blood, respectively). These data seriously challenge the suitability of the GnRHR-system as a suitable target for in vivo peptide receptor imaging using radiolabeled GnRH-I derivatives, despite the availability of high-affinity radiolabeled receptor-ligands such as D-Lys(6)(Ahx-[(18)F]FBOA)-GnRH-I.  相似文献   
92.
The yeast Saccharomyces cerevisiae vacuolar ATPase (V-ATPase) is a multisubunit complex divided into two sectors: the V1 sector catalyzes ATP hydrolysis and the V0 sector translocates protons, resulting in acidification of its resident organelle. Four protein factors participate in V0 assembly. We have discovered a fifth V0 assembly factor, Voa1p (YGR106C); an endoplasmic reticulum (ER)-localized integral membrane glycoprotein. The role of Voa1p in V0 assembly was revealed in cells expressing an ER retrieval-deficient form of the V-ATPase assembly factor Vma21p (Vma21pQQ). Loss of Voa1p in vma21QQ yeast cells resulted in loss of V-ATPase function; cells were unable to acidify their vacuoles and exhibited growth defects typical of cells lacking V-ATPase. V0 assembly was severely compromised in voa1 vma21QQ double mutants. Isolation of V0–Vma21p complexes indicated that Voa1p associates most strongly with Vma21p and the core proteolipid ring of V0 subunits c, c′, and c″. On assembly of the remaining three V0 subunits (a, d, and e) into the V0 complex, Voa1p dissociates from the now fully assembled V0–Vma21p complex. Our results suggest Voa1p functions with Vma21p early in V0 assembly in the ER, but then it dissociates before exit of the V0–Vma21p complex from the ER for transport to the Golgi compartment.  相似文献   
93.
94.
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein–protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.  相似文献   
95.
96.
Partial submergence or treatment with either ethylene or gibberellicacid (GA3 induces rapid growth in deepwater rice (Oryza sativaL.). We correlated the synthesis of two cell wall componentswith two phases of internodal elongation, namely (13,14)-ß-glucanformation with cell elongation and lignification with differentiationof the secondary cell wall and cessation of growth. The contentof ß-glucan was highest in the zone of cell elongationin internodes of air-grown plants and plants that were inducedto grow rapidly by submergence. In the intercalary meristemand in the differentiation zone of the internode, ß-glucanlevels were ca. 70% lower than in the zone of cell elongation.The outer cell layers, enriched in epidermis, contained moreß-glucan in submerged, rapidly growing internodesthan in air-grown, control internodes. The ß-glucancontent of the inner, parenchymal tissue was unaffected or slightlylowered by submergence. The epidermis appears to be the growth-limitingstructure of rapidly growing rice internodes. We hypothesizethat elevated levels of ß-glucan contribute to elongationgrowth by increasing the extensibility of the cell wall. Lignificationwas monitored by measuring the content of lignin and the activitiesof two enzymes of the lignin biosynthetic pathway, coniferylalcohol dehydrogenase (CAD) and phenylalanine ammonia-lyase(PAL), in growing and non-growing regions of the internode.Using submerged whole plants and GA3-treated excised stem segments,we showed that lignin content and CAD activity were up to sixfoldlower in newly formed internodal tissue of rapidly growing ricethan in slowly growing tissue. No differences were observedin parts of the internode that had been formed prior to inductionof growth. PAL activity was reduced throughout the internodeof submerged plants. We conclude that lignification is one ofthe processes that is suppressed to permit rapid growth. 1 This work was supported by the National Science Foundationthrough grants No. DCB-8718873 and DCB-9103747 and by the Departmentof Energy through grant No. DE-FGO2-90ER20021. M.S. was therecipient of a fellowship from the Max Kade Foundation.  相似文献   
97.
The cytoplasmic and outer membranes containing either trans9-octadecenoate, trans9-hexadecenoate or cis9-octadecenoate as predominant unsaturated fatty acid residues in the phospholipids were prepared from a fatty acid auxotroph, Escherichia coli strain K1062. Order-disorder transitions of the phospholipids were revealed in both fractions of the cell envelope by fluorescent probing or wide angle X-ray diffraction. The mid-transition temperatures, Tt, and the range of the transition, ΔT, are similar in the outer and cytoplasmic membrane. Relative to the corresponding extracted lipids, 60–80% of the hydrocarbon chains take part in the transition in the cytoplasmic membrane whereas in the outer membrane only 25–40% of the chains become ordered. The results suggest that in the outer membrane part of the lipids form fluid domains in the form of mono- and/or bilayers.  相似文献   
98.
Through a biochemical and a genetic approach, we have identified several plant genes encoding methylthioribose (MTR) kinase, an enzyme involved in recycling of methionine through the methylthioadenosine (MTA) cycle. OsMTK1, an MTR kinase from rice (Oryza sativa), is 48.6 kD in size and shows cooperative kinetics with a V(max) of 4.9 pmol/min and a K0.5 of 16.8 microm. MTR kinase genes are the first genes to be identified from the MTA cycle in plants. Insertional mutagenesis of the unique AtMTK gene in Arabidopsis (Arabidopsis thaliana) resulted in an inability of plants to grow on MTA as a supplemental sulfur source. MTK knock-out plants were not impaired in growth under standard conditions, indicating that the MTA cycle is a nonessential metabolic pathway in Arabidopsis when sulfur levels are replete. In rice, OsMTK genes were strongly up-regulated in shoots and roots when plants were exposed to sulfur starvation. Gene expression was largely unaffected by lack of nitrogen or iron in the nutrient solution, indicating that OsMTK regulation was linked specifically to sulfur metabolism.  相似文献   
99.
100.
The lack of sufficient well-defined tumor-associated antigens is still a drawback on the way to a cytotoxic T-lymphocyte-based immunotherapy of renal cell carcinoma (RCC). We are trying to define a larger number of such targets by a combined approach involving HLA ligand characterization by mass spectrometry and gene expression profiling by oligonucleotide microarrays. Here, we present the results of a large-scale analysis of 13 RCC specimens. We were able to identify more than 700 peptides, mostly from self-proteins without any evident tumor association. However, some HLA ligands derived from previously known tumor antigens in RCC. In addition, gene expression profiling of tumors and a set of healthy tissues revealed novel candidate RCC-associated antigens. For several of them, we were able to characterize HLA ligands after extraction from the tumor tissue. Apart from universal RCC antigens, some proteins seem to be appropriate candidates in individual patients only. This underlines the advantage of a personalized therapeutic approach. Further analyses will contribute additional HLA ligands to this repertoire of universal as well as patient-individual tumor antigens.Tobias Krüger and Oliver Schoor contributed equally to this work.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号