首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   93篇
  国内免费   1篇
  2021年   6篇
  2016年   5篇
  2015年   11篇
  2014年   20篇
  2013年   15篇
  2012年   26篇
  2011年   22篇
  2010年   17篇
  2009年   20篇
  2008年   6篇
  2007年   17篇
  2006年   17篇
  2005年   16篇
  2004年   17篇
  2003年   23篇
  2002年   23篇
  2001年   12篇
  2000年   21篇
  1999年   15篇
  1998年   8篇
  1997年   11篇
  1996年   5篇
  1995年   10篇
  1994年   9篇
  1993年   10篇
  1992年   22篇
  1991年   13篇
  1990年   14篇
  1989年   21篇
  1988年   14篇
  1987年   15篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1983年   9篇
  1982年   10篇
  1980年   4篇
  1979年   7篇
  1978年   11篇
  1977年   10篇
  1976年   9篇
  1975年   10篇
  1974年   6篇
  1973年   7篇
  1972年   13篇
  1971年   6篇
  1970年   6篇
  1969年   4篇
  1968年   5篇
  1966年   5篇
排序方式: 共有638条查询结果,搜索用时 109 毫秒
81.
82.
An increasing number of neurodegenerative disorders have been found to be caused by expanding CAG triplet repeats that code for polyglutamine. Huntington's disease (HD) is the most common of these disorders and dentatorubral-pallidoluysian atrophy (DRPLA) is very similar to HD, but is caused by mutation in a different gene, making them good models to study. In this review, we will concentrate on the roles of protein aggregation, nuclear localization and proteolytic processing in disease pathogenesis. In cell model studies of HD, we have found that truncated N-terminal portions of huntingtin (the HD gene product) with expanded repeats form more aggregates than longer or full length huntingtin polypeptides. These shorter fragments are also more prone to aggregate in the nucleus and cause more cell toxicity. Further experiments with huntingtin constructs harbouring exogenous nuclear import and nuclear export signals have implicated the nucleus in direct cell toxicity. We have made mouse models of HD and DRPLA using an N-terminal truncation of huntingtin (N171) and full-length atrophin-1 (the DRPLA gene product), respectively. In both models, diffuse neuronal nuclear staining and nuclear inclusion bodies are observed in animals expressing the expanded glutamine repeat protein, further implicating the nucleus as a primary site of neuronal dysfunction. Neuritic pathology is also observed in the HD mice. In the DRPLA mouse model, we have found that truncated fragments of atrophin-1 containing the glutamine repeat accumulate in the nucleus, suggesting that proteolysis may be critical for disease progression. Taken together, these data lead towards a model whereby proteolytic processing, nuclear localization and protein aggregation all contribute to pathogenesis.  相似文献   
83.
Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats coding for glutamine in the HD gene product huntingtin. Although HD symptoms reflect preferential neuronal death in specific brain regions, huntingtin is expressed in almost all tissues, so abnormalities outside the brain might be expected. Although involvement of nuclei and mitochondria in HD pathophysiology has been suggested, specific intracellular defects that might elicit cell death have been unclear. Mitochondria dysfunction is reported in HD brains; mitochondria are organelles that regulates apoptotic cell death. We now report that lymphoblasts derived from HD patients showed increased stress-induced apoptotic cell death associated with caspase-3 activation. When subjected to stress, HD lymphoblasts also manifested a considerable increase in mitochondrial depolarization correlated with increased glutamine repeats.  相似文献   
84.
Di- to heptasaccharides isolated from total nondialyzable brain glycopeptides after release by alkaline borohydride treatment have been subjected to mass spectrometric and nuclear magnetic resonance spectroscopic analyses supplemented by TLC-MS analyses of derived neoglycolipids. A family of Manol-terminating oligosaccharides has been revealed which includes novel sequences with a 2, 6-disubstituted Manol: In contrast to the Manol-terminating HNK-1 antigen-positive chains described previously that occur as a minor population [Yuen, C.-T., Chai, W., Loveless, R.W., Lawson, A.M., Margolis, R.U. & Feizi, T. (1997) J. Biol. Chem. 272, 8924-8931], the above oligosaccharides are abundant. The ratio of these compounds to the classical N-acetylgalactosaminitol-terminating oligosaccharides is about 1 : 3. Thus, there appears to be in higher eukaryotes a major alternative pathway related to the yeast-type protein O-mannosylation, the enzymatic basis and functional importance of which now require investigation.  相似文献   
85.
86.
For many bacterial infections, drug resistant mutants are likely present by the time antibiotic treatment starts. Nevertheless, such infections are often successfully cleared. It is commonly assumed that this is due to the combined action of drug and immune response, the latter facilitating clearance of the resistant population. However, most studies of drug resistance emergence during antibiotic treatment focus almost exclusively on the dynamics of bacteria and the drug and neglect the contribution of immune defenses. Here, we develop and analyze several mathematical models that explicitly include an immune response. We consider different types of immune responses and investigate how each impacts the emergence of resistance. We show that an immune response that retains its strength despite a strong drug-induced decline of bacteria numbers considerably reduces the emergence of resistance, narrows the mutant selection window, and mitigates the effects of non-adherence to treatment. Additionally, we show that compared to an immune response that kills bacteria at a constant rate, one that trades reduced killing at high bacterial load for increased killing at low bacterial load is sometimes preferable. We discuss the predictions and hypotheses derived from this study and how they can be tested experimentally.  相似文献   
87.
88.
Although lumen generation has been extensively studied through so-called cyst-formation assays in Madin-Darby canine kidney (MDCK) cells, an underlying mechanism that leads to the initial appearance of a solitary lumen remains elusive. Lumen formation is thought to take place at early stages in aggregates containing only a few cells. Evolutionarily conserved polarity protein complexes, namely the Crumbs, Par, and Scribble complexes, establish apicobasal polarity in epithelial cells, and interference with their function impairs the regulated formation of solitary epithelial lumina. Here, we demonstrate that MDCK cells form solitary lumina during their first cell division. Before mitosis, Crumbs3a becomes internalized and concentrated in Rab11-positive recycling endosomes. These compartments become partitioned in both daughter cells and are delivered to the site of cytokinesis, thus forming the first apical membrane, which will eventually form a lumen. Endosome trafficking in this context appears to depend on the mitotic spindle apparatus and midzone microtubules. Furthermore, we show that this early lumen formation is regulated by the apical polarity complexes because Crumbs3 assists in the recruitment of aPKC to the forming apical membrane and interference with their function can lead to the formation of a no-lumen or multiple-lumen phenotype at the two-cell stage.  相似文献   
89.

Introduction

HIV prevalence among state prison inmates in the United States is more than five times higher than among nonincarcerated persons, but HIV transmission within U.S. prisons is sparsely documented. We investigated 88 HIV seroconversions reported from 1988–2005 among male Georgia prison inmates.

Methods

We analyzed medical and administrative data to describe seroconverters'' HIV testing histories and performed a case-crossover analysis of their risks before and after HIV diagnosis. We sequenced the gag, env, and pol genes of seroconverters'' HIV strains to identify genetically-related HIV transmission clusters and antiretroviral resistance. We combined risk, genetic, and administrative data to describe prison HIV transmission networks.

Results

Forty-one (47%) seroconverters were diagnosed with HIV from July 2003–June 2005 when voluntary annual testing was offered. Seroconverters were less likely to report sex (OR [odds ratio] = 0.02, 95% CI [confidence interval]: 0–0.10) and tattooing (OR = 0.03, 95% CI: <0.01–0.20) in prison after their HIV diagnosis than before. Of 67 seroconverters'' specimens tested, 33 (49%) fell into one of 10 genetically-related clusters; of these, 25 (76%) reported sex in prison before their HIV diagnosis. The HIV strains of 8 (61%) of 13 antiretroviral-naïve and 21 (40%) of 52 antiretroviral-treated seroconverters were antiretroviral-resistant.

Discussion

Half of all HIV seroconversions were identified when routine voluntary testing was offered, and seroconverters reduced their risks following their diagnosis. Most genetically-related seroconverters reported sex in prison, suggesting HIV transmission through sexual networks. Resistance testing before initiating antiretroviral therapy is important for newly-diagnosed inmates.  相似文献   
90.
Nonmotile cilia on olfactory sensory neurons (OSNs) compartmentalize signaling molecules, including odorant receptors and cyclic nucleotide-gated (CNG) channels, allowing for efficient, spatially confined responses to sensory stimuli . Little is known about the mechanisms of the ciliary targeting of olfactory CNG channels, composed of three subunits: CNGA2, CNGA4, and CNGB1b . Recent reports suggest that subunit composition of the retinal CNG channel influences localization, leading to disease . However, the mechanistic role of subunits in properly targeting native olfactory CNG channels remains unclear. Here, we show that heteromeric assembly with CNGB1b, containing a critical carboxy-terminal motif (RVxP), is required for ciliary trafficking of olfactory CNG channels. Movement of proteins within the cilia is governed by intraflagellar transport (IFT), a process that facilitates bidirectional movement of cargo along microtubules. Work in C. elegans has established that heterotrimeric and homodimeric kinesin-2 family members play a critical role in anterograde transport . In mammalian systems, the heterotrimeric KIF3a/KIF3b/KAP-3 complex plays a clear role in IFT; however, no role has been established for KIF17, the mammalian homolog of OSM-3 . Here, we demonstrate that KIF17 is required for olfactory CNG channel targeting, providing novel insights into mechanisms of mammalian ciliary transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号