首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   31篇
  562篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   7篇
  2017年   3篇
  2016年   10篇
  2015年   20篇
  2014年   21篇
  2013年   33篇
  2012年   34篇
  2011年   38篇
  2010年   18篇
  2009年   13篇
  2008年   43篇
  2007年   26篇
  2006年   25篇
  2005年   26篇
  2004年   38篇
  2003年   25篇
  2002年   29篇
  2001年   7篇
  2000年   2篇
  1999年   13篇
  1998年   12篇
  1997年   4篇
  1996年   10篇
  1995年   8篇
  1994年   2篇
  1993年   10篇
  1992年   8篇
  1991年   11篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1977年   3篇
  1974年   2篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1963年   2篇
  1962年   1篇
  1931年   2篇
排序方式: 共有562条查询结果,搜索用时 15 毫秒
31.
D-Glucose is the preferred carbon and energy source for most eukaryotic cells. Immediately following its uptake, glucose is rapidly phosphorylated to glucose-6-phosphate (Glc-6-P). The yeast Saccharomyces cerevisiae has three enzymes (Hxk1p, Hxk2p, and Glk1p) that convert glucose to Glc-6-P. In the present study, we found that yeast mutants lacking any two of these enzymes retain the ability to efficiently convert glucose to Glc-6-P and thus maintain a low level of cellular glucose. However, a mutant strain lacking all three glucose-phosphorylating enzymes contained up to 225-fold more intracellular glucose than normal. Drugs that inhibit the synthesis or the trimming of the lipid-linked core oligosaccharide Glu(3)Man(9)GlcNac(2) effectively reduced the accumulation of glucose. Similarly, mutations that block the addition of glucose residues to the core oligosaccharide moiety, such as alg5Delta or alg6Delta, also diminished glucose accumulation. These results indicate that the intracellular glucose accumulation observed in the glucose phosphorylation mutant results primarily from the trimming of glucose residues from core oligosaccharide chains within the endoplasmic reticulum (ER). Consistent with this conclusion, both [(14)C]glucose exchange and subcellular fractionation experiments indicate that much of the accumulated glucose is retained within an intracellular compartment, suggesting that the efficient transport of glucose from the ER to the cytosol in yeast may be coupled to its rephosphorylation to Glc-6-P. The high level of cellular glucose was associated with an increased level of protein glycation and the release of glucose into the culture medium via its transit through the secretory pathway. Finally, we also found that the accumulation of glucose may lead to a subtle alteration in ion homeostasis, particularly Ca(2+) uptake. This suggests that this mutant strain may serve as a useful model to study the consequences of excessive glucose accumulation and protein glycation.  相似文献   
32.
As is the case for normal individual variation in anxiety levels, the conditions panic disorder, agoraphobia and other phobias have a significant genetic basis. Recent reports have started to untangle the genetic relationships between predispositions to anxiety and anxiety disorders.  相似文献   
33.
Cold-adapted (CA) rats, unlike non-adapted (NA) ones, give exaggerated metabolic response to acute cold exposure, with paradoxical "overshoot" core temperature (Tc) rise in the cold, and they also give enhanced hyperthermia to central injection of prostaglandin E1 (PGE1). The adaptation-dependent differences might be explained either by the high thermogenic capacity of peripheral tissues in CA rats or by differences in the central processing of regulatory signals. If high tissue metabolism sufficiently explains the extreme responses of CA animals, other hypermetabolic states (with high resting metabolic rate, RMR), e.g. hyperthyroidism, should also be accompanied by enhanced reactions. In the present study thermoregulatory responses to acute cold exposure or to PGE1 were compared in hypermetabolic CA, similarly hypermetabolic thyroxine-treated (T4) and control non-hypermetabolic NA rats (mean RMR = 8.12, 8.47 and 6.03 W kg(-1), respectively). Cold exposure was followed by paradoxical core temperature (Tc) rise of 0.5 to 0.7 degrees C only in CA rats, but by Tc fall (0.8 to 2.1 degrees C) in NA and T4 animals. Identical central stimuli (PGE1) induced larger elevations of Tc and metabolic rate in CA rats than in similarly hypermetabolic T4 or in non-hypermetabolic NA animals (mean Tc rise of 1.9 degrees C in CA vs. 0.9 degrees C in T4 and 1.0 degrees C in NA rats). Vasodilatation thresholds were also similar in NA and T4, but lowered in CA animals. A hypermetabolic status, per se, does not seem to explain the enhanced thermoregulatory responsiveness of CA animals, adaptation-induced central regulatory changes may be more important for the "overshoot" phenomenon.  相似文献   
34.
Inhibitors of type-2A protein phosphatase (PPase-2A), calyculin A (cal A) and okadaic acid (OA), inhibit pollen grain germination and growth of pollen tubes of Lilium longiflorum Thunb. at nanomolar concentrations. Half-maximal inhibition of cytoplasmic PPase-2A activity was below 0.1 nM for cal A and at 0.7 nM for OA. Other protein phosphatase inhibitors (tautomycin, cypermethrin, and dephostatin) were less effective. The OA- and cal A-sensitive as well as dephostatin-sensitive PPase activity in the cytoplasm did not change during germination and growth of pollen tubes. Addition of cal A and OA disturbed the direction of pollen tube growth and the distribution of cytoplasmic organelles and caused cell wall thickenings as observed by light and electron microscopy. Inhibition of PPase-2A caused multiple effects at the cellular level, cytoskeletal elements being a putative target of PPase-2A activity. Received: 30 March 1998 / Accepted: 6 July 1998  相似文献   
35.
Breast cancer is one of the most frequent malignancies affecting women. The human breast cancer gene 1 (BRCA1) gene is mutated in a distinct proportion of hereditary breast and ovarian cancers. Tumourigenesis in individuals with germline BRCA1 mutations requires somatic inactivation of the remaining wild-type allelle. Although, this evidence supports a role for BRCA1 as a tumour suppressor, the mechanisms through which its loss leads to tumourigenesis remain to be determined. Neither the expression pattern nor the described functions of human BRCA1 and murine breast cancer gene 1 (Brca1) can explain the specific association of mutations in this gene with the development of breast and ovarian cancer. Investigation of the role of Brca1 in normal cell differentiation processes might provide the basis to understand the tissue-restricted properties.  相似文献   
36.
Secretory proteins in yeast are N- and O-glycosylated while they enter the endoplasmic reticulum. N-glycosylation is initiated by the oligosaccharyl transferase complex and O-mannosylation is initiated by distinct O-mannosyltransferase complexes of the protein mannosyl transferase Pmt1/Pmt2 and Pmt4 families. Using covalently linked cell-wall protein 5 (Ccw5) as a model, we show that the Pmt4 and Pmt1/Pmt2 mannosyltransferases glycosylate different domains of the Ccw5 protein, thereby mannosylating several consecutive serine and threonine residues. In addition, it is shown that O-mannosylation by Pmt4 prevents N-glycosylation by blocking the hydroxy amino acid of the single N-glycosylation site present in Ccw5. These data prove that the O- and N-glycosylation machineries compete for Ccw5; therefore O-mannosylation by Pmt4 precedes N-glycosylation.  相似文献   
37.
The genes TSC1, encoding hamartin, and TSC2, encoding tuberin are responsible for tuberous sclerosis. This autosomal dominant tumor suppressor gene syndrome affects about 1 in 6000 individuals. A variety of tumors characteristically occur in different organs of tuberous sclerosis patients and are believed to result from defects in cell cycle/cell size control. We performed a proteomics approach of two-dimensional gel electrophoresis with subsequent mass spectrometrical identification of protein spots after ectopic overexpression of human TSC1 or TSC2. We found the cellular levels of four isoforms of the 14-3-3 protein family, 14-3-3 gamma, 14-3-3, 14-3-3 sigma, and 14-3-3 zeta, to be regulated by the two tuberous sclerosis gene products. In the same experiments the protein levels of keratin 7, capZ alpha-1 subunit, ezrin, and nedasin were not affected by ectopic TSC1 or TSC2. Western blot analyses confirmed the deregulation of 14-3-3 proteins upon ectopic overexpression of TSC1 and TSC2. A TSC1 mutant not encoding the transmembrane domain and the tuberin-binding domain but harbouring most of the coiled-coil region and the ERM protein interaction domain of hamartin did not affect 14-3-3 protein levels. The here presented findings suggest that deregulation of 14-3-3 protein amounts might contribute to the development of tumors in tuberous sclerosis patients. These data provide important new insights into the molecular development of this disease especially since both, the TSC genes and the 14-3-3 proteins, are known to be involved in mammalian cell cycle control.  相似文献   
38.
Protein misfolding is linked to different neurodegenerative disorders like Alzheimer's disease, polyglutamine, and prion diseases. We investigated the cytotoxic effects of aberrant conformers of the prion protein (PrP) and show that toxicity is specifically linked to misfolding of PrP in the cytosolic compartment and involves binding of PrP to the anti-apoptotic protein Bcl-2. PrP targeted to different cellular compartments, including the cytosol, nucleus, and mitochondria, adopted a misfolded and partially proteinase K-resistant conformation. However, only in the cytosol did the accumulation of misfolded PrP induce apoptosis. Apoptotic cell death was also induced by two pathogenic mutants of PrP, which are partially localized in the cytosol. A mechanistic analysis revealed that the toxic potential is linked to an internal domain of PrP (amino acids 115-156) and involves coaggregation of cytosolic PrP with Bcl-2. Increased expression of the chaperones Hsp70 and Hsp40 prevented the formation of PrP/Bcl-2 coaggregates and interfered with PrP-induced apoptosis. Our study reveals a compartment-specific toxicity of PrP misfolding that involves coaggregation of Bcl-2 and indicates a protective role of molecular chaperones.  相似文献   
39.
Strategies for antiviral resistance in transgenic plants   总被引:3,自引:0,他引:3  
Genetic engineering offers a means of incorporating new virus resistance traits into existing desirable plant cultivars. The initial attempts to create transgenes conferring virus resistance were based on the pathogen-derived resistance concept. The expression of the viral coat protein gene in transgenic plants was shown to induce protective effects similar to classical cross protection, and was therefore distinguished as 'coat-protein-mediated' protection. Since then, a large variety of viral sequences encoding structural and non-structural proteins were shown to confer resistance. Subsequently, non-coding viral RNA was shown to be a potential trigger for virus resistance in transgenic plants, which led to the discovery of a novel innate resistance in plants, RNA silencing. Apart from the majority of pathogen-derived resistance strategies, alternative strategies involving virus-specific antibodies have been successfully applied. In a separate section, efforts to combat viroids in transgenic plants are highlighted. In a final summarizing section, the potential risks involved in the introduction of transgenic crops and the specifics of the approaches used will be discussed.  相似文献   
40.

Background

The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons.

Results

Here we describe mitotic slippage in yeast bub2?? mutant cells that are defective in the repression of precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments.

Conclusions

The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号