首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4727篇
  免费   475篇
  国内免费   2篇
  2022年   50篇
  2021年   101篇
  2020年   61篇
  2019年   90篇
  2018年   113篇
  2017年   100篇
  2016年   138篇
  2015年   221篇
  2014年   239篇
  2013年   284篇
  2012年   331篇
  2011年   276篇
  2010年   190篇
  2009年   175篇
  2008年   244篇
  2007年   229篇
  2006年   223篇
  2005年   212篇
  2004年   176篇
  2003年   173篇
  2002年   158篇
  2001年   116篇
  2000年   111篇
  1999年   103篇
  1998年   62篇
  1997年   50篇
  1996年   53篇
  1995年   42篇
  1994年   48篇
  1993年   45篇
  1992年   80篇
  1991年   73篇
  1990年   73篇
  1989年   47篇
  1988年   46篇
  1987年   47篇
  1986年   32篇
  1985年   42篇
  1984年   32篇
  1983年   37篇
  1982年   40篇
  1981年   26篇
  1980年   16篇
  1979年   26篇
  1978年   17篇
  1977年   19篇
  1976年   15篇
  1975年   17篇
  1974年   13篇
  1968年   14篇
排序方式: 共有5204条查询结果,搜索用时 906 毫秒
241.
Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells’ (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.Subject terms: Breast cancer, Cancer stem cells  相似文献   
242.
Aging is associated with dramatic changes to DNA methylation (DNAm), although the causes and consequences of such alterations are unknown. Our ability to experimentally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability to study and manipulate these changes using in vitro models. However, it remains unclear whether the changes elicited by cells in culture can serve as a model of what is observed in aging tissues in vivo. To test this, we serially passaged mouse embryonic fibroblasts (MEFs) and assessed changes in DNAm at each time point via reduced representation bisulfite sequencing. By developing a measure that tracked cellular aging in vitro, we tested whether it tracked physiological aging in various mouse tissues and whether anti‐aging interventions modulate this measure. Our measure, termed CultureAGE, was shown to strongly increase with age when examined in multiple tissues (liver, lung, kidney, blood, and adipose). As a control, we confirmed that the measure was not a marker of cellular senescence, suggesting that it reflects a distinct yet progressive cellular aging phenomena that can be induced in vitro. Furthermore, we demonstrated slower epigenetic aging in animals undergoing caloric restriction and a resetting of our measure in lung and kidney fibroblasts when re‐programmed to iPSCs. Enrichment and clustering analysis implicated EED and Polycomb group (PcG) factors as potentially important chromatin regulators in translational culture aging phenotypes. Overall, this study supports the concept that physiologically relevant aging changes can be induced in vitro and used to uncover mechanistic insights into epigenetic aging.  相似文献   
243.
Glutathione (GSH) depletion by diethyl maleate (DEM) administration and its rapid repletion were associated with the development of a moderate acidosis in the rat. The acidosis observed after DEM treatment could be a consequence of an impairment of lactate metabolism. GSH-depleted rats also showed an increased urine pH and a higher bicarbonate fractional excretion compared with control rats. Renal bicarbonate excretion was magnified when blood bicarbonate levels were normalized by means of a bicarbonate infusion in GSH-depleted rats; however, the amount of bicarbonate excreted in the urine was a very small fraction (less than 5%) of the calculated filtered load. GSH-depleted rats failed to elevate the relation urine minus blood (U-B) pCO2 as compared with control rats when they were subjected to a high bicarbonate load to the distal portions of the nephron. All these data were consistent with a distal renal tubular acidosis due to GSH depletion which could participate in the maintenance of the systemic acidosis, although it is unlikely that it is the primary cause of the acidosis.  相似文献   
244.
245.
In vivo effects of the antidepressant fluoxetine on spleen antioxidant status of C57BL/6 mice were studied using a melanoma experimental model. After a 14‐day treatment with fluoxetine (10 mg kg?1 day?1, i.p.), the endogenous antioxidant non‐enzyme (glutathione) and enzyme (superoxide dismutase (SOD) and glutathione peroxidase (GPx)) defense systems in spleen of healthy animals were not changed; the lipid peroxidation (LP) was also unchanged. When B16F10 melanoma cells were introduced in C57BL/6 mice 2 h before fluoxetine treatment, a drug‐protective effect against the melanoma‐induced oxidative changes (increased LP and decreased total glutathione (GSH)‐level, as well as antioxidant enzyme activities) in spleen was observed. Fluoxetine dose‐dependently reduced the amounts of free oxygen radicals (hydroxyl and superoxide anion radicals), generated in chemical systems. Taken together, the present results suggest that fluoxetine, acting as antioxidant, prevents from melanoma‐induced oxidative changes in mice spleen. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
246.
Interstrand cross-links at T(A/T)4A sites in cellular DNA are associated with hypercytotoxicity of an anticancer drug, bizelesin. Here we evaluated whether these lethal effects reflect targeting critical genomic regions. An in silico analysis of human sequences showed that T(A/T)4A motifs are on average scarce and scattered. However, significantly higher local motif densities were identified in distinct minisatellite regions (200-1000 base pairs of approximately 85-100% AT), herein referred to as "AT islands." Experimentally detected bizelesin lesions agree with these in silico predictions. Actual bizelesin adducts clustered within the model AT island naked DNA, whereas motif-poor sequences were only sparsely adducted. In cancer cells, bizelesin produced high levels of lesions (approximately 4.7-7.1 lesions/kilobase pair/microM drug) in several prominent AT islands, compared with markedly lower lesion levels in several motif-poor loci and in bulk cellular DNA (approximately 0.8-1.3 and approximately 0.9 lesions/kilobase pair/microM drug, respectively). The identified AT islands exhibit sequence attributes of matrix attachment regions (MARs), domains that organize DNA loops on the nuclear matrix. The computed "MAR potential" and propensity for supercoiling-induced duplex destabilization (both predictive of strong MARs) correlate with the total number of bizelesin binding sites. Hence, MAR-like AT-rich non-coding domains can be regarded as a novel class of critical targets for anticancer drugs.  相似文献   
247.
Melanin-concentrating hormone (MCH) is a cyclic nonadecapeptide involved in the regulation of feeding behavior, which acts through a G protein-coupled receptor (SLC-1) inhibiting adenylcyclase activity. In this study, 57 analogues of MCH were investigated on the recently cloned human MCH receptor stably expressed in HEK293 cells, on both the inhibition of forskolin-stimulated cAMP production and guanosine-5'-O-(3-[(35)S]thiotriphosphate ([(35)S]- GTPgammaS) binding. The dodecapeptide MCH-(6-17) (MCH ring between Cys(7) and Cys(16), with a single extra amino acid at the N terminus (Arg(6)) and at the C terminus (Trp(17))) was found to be the minimal sequence required for a full and potent agonistic response on cAMP formation and [(35)S]- GTPgammaS binding. We Ala-scanned this dodecapeptide and found that only 3 of 8 amino acids of the ring, namely Met(8), Arg(11), and Tyr(13), were essential to elicit full and potent responses in both tests. Deletions inside the ring led either to inactivity or to poor antagonists with potencies in the micromolar range. Cys(7) and Cys(16) were substituted by Asp and Lys or one of their analogues, in an attempt to replace the disulfide bridge by an amide bond. However, those modifications were deleterious for agonistic activity. In [(35)S]- GTPgammaS binding, these compounds behaved as weak antagonists (K(B) 1-4 microm). Finally, substitution in MCH-(6-17) of 6 out of 12 amino acids by non-natural residues and concomitant replacement of the disulfide bond by an amide bond led to three compounds with potent antagonistic properties (K(B) = 0.1-0.2 microm). Exploitation of these structure-activity relationships should open the way to the design of short and stable MCH peptide antagonists.  相似文献   
248.
249.
Phospholipase Cgamma (PLCgamma) isoforms are regulated through activation of tyrosine kinase-linked receptors. The importance of growth factor-stimulated phosphorylation of specific tyrosine residues has been documented for PLCgamma1; however, despite the critical importance of PLCgamma2 in B-cell signal transduction, neither the tyrosine kinase(s) that directly phosphorylate PLCgamma2 nor the sites in PLCgamma2 that become phosphorylated after stimulation are known. By measuring the ability of human PLCgamma2 to restore calcium responses to the B-cell receptor stimulation or oxidative stress in a B-cell line (DT40) deficient in PLCgamma2, we have demonstrated that two tyrosine residues, Tyr(753) and Tyr(759), were important for the PLCgamma2 signaling function. Furthermore, the double mutation Y753F/Y759F in PLCgamma2 resulted in a loss of tyrosine phosphorylation in stimulated DT40 cells. Of the two kinases that previously have been proposed to phosphorylate PLCgamma2, Btk, and Syk, purified Btk had much greater ability to phosphorylate recombinant PLCgamma2 in vitro, whereas Syk efficiently phosphorylated adapter protein BLNK. Using purified proteins to analyze the formation of complexes, we suggest that function of Syk is to phosphorylate BLNK, providing binding sites for PLCgamma2. Further analysis of PLCgamma2 tyrosine residues phosphorylated by Btk and several kinases from the Src family has suggested multiple sites of phosphorylation and, in the context of a peptide incorporating residues Tyr(753) and Tyr(759), shown preferential phosphorylation of Tyr(753).  相似文献   
250.
Hydroxycitrate (HCA), a popular dietary supplement for weight loss, is a competitive inhibitor of ATP-citrate lyase, an extramitochondrial enzyme involved in the initial steps of de novo lipogenesis (DNL). Although animal studies have shown that HCA effectively inhibits DNL and induces weight loss, these findings have not been consistent in humans. This raises the possibility that the bioavailability of HCA may differ among species. We developed a new GC/MS method to measure HCA levels in blood, using [U-(13)C]citrate (CA*) as internal standard to account for losses associated with the isolation, derivatization, and measurement of HCA. HCA and CA* were derivatized with BSTFA + 10% TMCS and analyzed using PCI/GC/MS (CA*, m/z 471; and HCA, m/z 553). The plasma HCA concentration was measured over a 3.5-h period in four subjects having ingested 2 g of HCA. Their plasma HCA concentration ranged from 0.8 to 8.4 microg/ml 30 min and 2 h after ingestion, respectively. These results demonstrate that when taken acutely, HCA is absorbed, yet present in small quantities in human plasma. This simple method requiring minimal sample preparation is able to measure trace amounts of HCA with accuracy and precision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号