首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2082篇
  免费   163篇
  国内免费   2篇
  2023年   9篇
  2022年   30篇
  2021年   36篇
  2020年   27篇
  2019年   32篇
  2018年   56篇
  2017年   48篇
  2016年   65篇
  2015年   100篇
  2014年   111篇
  2013年   140篇
  2012年   149篇
  2011年   137篇
  2010年   102篇
  2009年   96篇
  2008年   115篇
  2007年   135篇
  2006年   123篇
  2005年   95篇
  2004年   105篇
  2003年   87篇
  2002年   78篇
  2001年   41篇
  2000年   24篇
  1999年   31篇
  1998年   22篇
  1997年   28篇
  1996年   12篇
  1995年   10篇
  1994年   18篇
  1993年   18篇
  1992年   25篇
  1991年   23篇
  1990年   15篇
  1989年   8篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1985年   5篇
  1984年   11篇
  1983年   8篇
  1982年   7篇
  1981年   4篇
  1979年   4篇
  1978年   6篇
  1976年   3篇
  1975年   5篇
  1974年   3篇
  1972年   4篇
  1968年   2篇
排序方式: 共有2247条查询结果,搜索用时 765 毫秒
71.
Mycoplasma pneumoniae, a threatening pathogen with a minimal genome, is a model organism for bacterial systems biology for which substantial experimental information is available. With the goal of understanding the complex interactions underlying its metabolism, we analyzed and characterized the metabolic network of M. pneumoniae in great detail, integrating data from different omics analyses under a range of conditions into a constraint‐based model backbone. Iterating model predictions, hypothesis generation, experimental testing, and model refinement, we accurately curated the network and quantitatively explored the energy metabolism. In contrast to other bacteria, M. pneumoniae uses most of its energy for maintenance tasks instead of growth. We show that in highly linear networks the prediction of flux distributions for different growth times allows analysis of time‐dependent changes, albeit using a static model. By performing an in silico knock‐out study as well as analyzing flux distributions in single and double mutant phenotypes, we demonstrated that the model accurately represents the metabolism of M. pneumoniae. The experimentally validated model provides a solid basis for understanding its metabolic regulatory mechanisms.  相似文献   
72.
Microbial metabolism in aromatic-contaminated environments has important ecological implications, and obtaining a complete understanding of this process remains a relevant goal. To understand the roles of biodiversity and aromatic-mediated genetic and metabolic rearrangements, we conducted ‘OMIC'' investigations in an anthropogenically influenced and polyaromatic hydrocarbon (PAH)-contaminated soil with (Nbs) or without (N) bio-stimulation with calcium ammonia nitrate, NH4NO3 and KH2PO4 and the commercial surfactant Iveysol, plus two naphthalene-enriched communities derived from both soils (CN2 and CN1, respectively). Using a metagenomic approach, a total of 52, 53, 14 and 12 distinct species (according to operational phylogenetic units (OPU) in our work equivalent to taxonomic species) were identified in the N, Nbs, CN1 and CN2 communities, respectively. Approximately 10 out of 95 distinct species and 238 out of 3293 clusters of orthologous groups (COGs) protein families identified were clearly stimulated under the assayed conditions, whereas only two species and 1465 COGs conformed to the common set in all of the mesocosms. Results indicated distinct biodegradation capabilities for the utilisation of potential growth-supporting aromatics, which results in bio-stimulated communities being extremely fit to naphthalene utilisation and non-stimulated communities exhibiting a greater metabolic window than previously predicted. On the basis of comparing protein expression profiles and metagenome data sets, inter-alia interactions among members were hypothesised. The utilisation of curated databases is discussed and used for first time to reconstruct ‘presumptive'' degradation networks for complex microbial communities.  相似文献   
73.
74.

Background

H. pylori infection is acquired during childhood and causes a chronic inflammatory response in the gastric mucosa, which is considered the main risk factor to acquire gastric cancer (GC) later in life. More recently, infection by Epstein-Barr virus (EBV) have also been associated with GC. The role of EBV in early inflammatory responses and its relationship with H. pylori infection remains poorly studied. Here, we assessed whether EBV infection in children correlated with the stage of gastritis and whether co-infection with H. pylori affected the severity of inflammation.

Methodology/Principal Findings

333 pediatric patients with chronic abdominal pain were studied. From them, gastric biopsies were taken and inflammation graded according to the Sydney system; peripheral blood was drawn and antibodies against EBV (IgG and IgM anti-VCA) and H. pylori (IgG anti-whole bacteria and anti-CagA) were measured in sera. We found that children infected only by EBV presented mild mononuclear (MN) and none polymorphonuclear (PMN) cell infiltration, while those infected by H. pylori presented moderate MN and mild PMN. In contrast, patients co-infected with both pathogens were significantly associated with severe gastritis. Importantly, co-infection of H. pylori CagA+/EBV+ had a stronger association with severe MN (PR 3.0) and PMN (PR 7.2) cells than cases with single H. pylori CagA+ infection.

Conclusions/Significance

Co-infection with EBV and H. pylori in pediatric patients is associated with severe gastritis. Even single infections with H. pylori CagA+ strains are associated with mild to moderate infiltration arguing for a cooperative effect of H. pylori and EBV in the gastric mucosa and revealing a critical role for EBV previously un-appreciated. This study points out the need to study both pathogens to understand the mechanism behind severe damage of the gastric mucosa, which could identified children with increased risk to present more serious lesions later in life.  相似文献   
75.
76.
77.
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号