首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3600篇
  免费   245篇
  国内免费   2篇
  3847篇
  2024年   4篇
  2023年   35篇
  2022年   66篇
  2021年   117篇
  2020年   79篇
  2019年   101篇
  2018年   120篇
  2017年   109篇
  2016年   164篇
  2015年   238篇
  2014年   222篇
  2013年   279篇
  2012年   334篇
  2011年   296篇
  2010年   189篇
  2009年   145篇
  2008年   196篇
  2007年   217篇
  2006年   149篇
  2005年   143篇
  2004年   116篇
  2003年   98篇
  2002年   91篇
  2001年   50篇
  2000年   38篇
  1999年   36篇
  1998年   16篇
  1997年   19篇
  1996年   11篇
  1995年   16篇
  1994年   7篇
  1993年   10篇
  1992年   18篇
  1991年   17篇
  1990年   8篇
  1989年   8篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1980年   3篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
  1974年   5篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
排序方式: 共有3847条查询结果,搜索用时 15 毫秒
111.
Recently, we described the improved immunogenicity of new malaria vaccine candidates based on the expression of fusion proteins containing immunodominant epitopes of merozoites and Salmonella enterica serovar Typhimurium flagellin (FliC) protein as an innate immune agonist. Here, we tested whether a similar strategy, based on an immunodominant B-cell epitope from malaria sporozoites, could also generate immunogenic fusion polypeptides. A recombinant His6-tagged FliC protein containing the C-terminal repeat regions of the VK210 variant of Plasmodium vivax circumsporozoite (CS) protein was constructed. This recombinant protein was successfully expressed in Escherichia coli as soluble protein and was purified by affinity to Ni-agarose beads followed by ion exchange chromatography. A monoclonal antibody specific for the CS protein of P. vivax sporozoites (VK210) was able to recognise the purified protein. C57BL/6 mice subcutaneously immunised with the recombinant fusion protein in the absence of any conventional adjuvant developed protein-specific systemic antibody responses. However, in mice genetically deficient in expression of TLR5, this immune response was extremely low. These results extend our previous observations concerning the immunogenicity of these recombinant fusion proteins and provide evidence that the main mechanism responsible for this immune activation involves interactions with TLR5, which has not previously been demonstrated for any recombinant FliC fusion protein.  相似文献   
112.
113.
Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.  相似文献   
114.
The yeast communities associated with the stingless bees Tetragonisca angustula, Melipona quadrifasciata and Frieseomelitta varia were studied. The bees T. angustula and F. varia showed a strong association with the yeast Starmerella meliponinorum. M. quadrifasciata more frequently carried a species related to Candida apicola, but also vectored low numbers of S. meliponinorum. Some of the yeasts isolated from adult bees were typical of species known to occur in flowers. Other yeast species found in adult bees were more typical of those found in the phylloplane. S. meliponinorum and the species in the C. apicola complex, also part of the Starmerella clade, may have a mutualistic relationship with the bees studied. Many yeasts in that group are often found in bees or substrates visited by bees, suggesting that a mutually beneficial interaction exists between them.  相似文献   
115.
In alpine ecosystems, tannin-rich-litter decomposition occurs mainly under snow. With global change, variations in snowfall might affect soil temperature and microbial diversity with biogeochemical consequences on ecosystem processes. However, the relationships linking soil temperature and tannin degradation with soil microorganisms and nutrients fluxes remain poorly understood. Here, we combined biogeochemical and molecular profiling approaches to monitor tannin degradation, nutrient cycling and microbial communities (Bacteria, Crenarcheotes, Fungi) in undisturbed wintertime soil cores exposed to low temperature (0°C/−6°C), amended or not with tannins, extracted from Dryas octopetala . No toxic effect of tannins on microbial populations was found, indicating that they withstand phenolics from alpine vegetation litter. Additionally at −6°C, higher carbon mineralization, higher protocatechuic acid concentration (intermediary metabolite of tannin catabolism), and changes in fungal phylogenetic composition showed that freezing temperatures may select fungi able to degrade D. octopetala 's tannins. In contrast, negative net nitrogen mineralization rates were observed at −6°C possibly due to a more efficient N immobilization by tannins than N production by microbial activities, and suggesting a decoupling between C and N mineralization. Our results confirmed tannins and soil temperatures as relevant controls of microbial catabolism which are crucial for alpine ecosystems functioning and carbon storage.  相似文献   
116.
Carboxylic acid transporters form a heterogeneous group of proteins, presenting diverse mechanisms of action and regulation, and belonging to several different families. Multiple physiological and genetic studies in several organisms, from yeast to mammals, have allowed the identification of various genes coding for carboxylate transporters. Detailed understanding of the metabolism and transport of these nutrients has become more important than ever, both from a fundamental and from an applied point of view. Under a biotechnological perspective, the increasing economic value of these compounds has boosted this field of research considerably. Here we review the current knowledge on yeast carboxylate transporters, at the biochemical and molecular level, focusing also on recent biotechnological developments.  相似文献   
117.
118.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
119.
Symplocos minima, a new species of Symplocos section Hopea from the Itatiaia Plateau in the Atlantic Rain Forest biome of southeastern Brazil, is described and illustrated. This species is distinguished by its densely compact shrubby habit, ascending leaves, fasciculate inflorescences with several persistent bracts, corolla with five to six erect lobes, pistillate flowers with the disc not thickened along the margin, fruiting calyx lobes obscuring the disc, and seeds sub-orbicular in cross section. The new species is morphologically related to S. itatiaiae and S. pentandra, but can be differenciated from them mainly due to the tree habit and fruiting calyx lobes not obscuring the disc in S. itatiaiae and the pistillate flowers with a disc that is thickened along the margin in S. pentandra.  相似文献   
120.
Status epilepticus (SE) is a severe clinical manifestation of epilepsy associated with intense neuronal loss and inflammation, two key factors involved in the pathophysiology of temporal lobe epilepsy. Bone marrow mononuclear cells (BMMC) attenuated the consequences of pilocarpine-induced SE, including neuronal loss, in addition to frequency and duration of seizures. Here we investigated the effects of BMMC transplanted early after the onset of SE in mice, as well as the involvement of soluble factors produced by BMMC in the effects of the cell therapy. Mice were injected with pilocarpine for SE induction and randomized into three groups: transplanted intravenously with 1 × 107 BMMC isolated from GFP transgenic mice, injected with BMMC lysate, and saline-treated controls. Cell tracking, neuronal counting in hippocampal subfields and cytokine analysis in the serum and brain were performed. BMMC were found in the brain 4 h following transplantation and their numbers progressively decreased until 24 h following transplantation. A reduction in hippocampal neuronal loss after SE was found in mice treated with live BMMC and BMMC lysate when compared to saline-treated, SE-induced mice. Moreover, the expression of inflammatory cytokines IL-1β, TNF-α, IL-6 was decreased after injection of live BMMC and to a lesser extent, of BMMC lysate, when compared to SE-induced controls. In contrast, IL-10 expression was increased. Analysis of markers for microglia activation demonstrated a reduction of the expression of genes related to type 1-activation. BMMC transplantation promotes neuroprotection and mediates anti-inflammatory effects following SE in mice, possibly through the secretion of soluble factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号