首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   669篇
  免费   38篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   15篇
  2020年   6篇
  2019年   12篇
  2018年   12篇
  2017年   13篇
  2016年   28篇
  2015年   36篇
  2014年   25篇
  2013年   49篇
  2012年   70篇
  2011年   58篇
  2010年   42篇
  2009年   38篇
  2008年   47篇
  2007年   50篇
  2006年   26篇
  2005年   37篇
  2004年   30篇
  2003年   26篇
  2002年   20篇
  2001年   6篇
  2000年   2篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1966年   1篇
  1962年   1篇
排序方式: 共有707条查询结果,搜索用时 15 毫秒
541.
542.
A total of 214 members of the sugar porter (SP) family (TC 2.A.1.1) from eight hemiascomycetous yeasts: Saccharomyces cerevisiae, Candida glabrata, Kluyveromyces lactis, Ashbya (Eremothecium) gossypii, Debaryomyces hansenii, Yarrowia lipolytica, Candida albicans and Pichia stipitis, were identified. The yeast SPs were classified in 13 different phylogenetic clusters. Specific sugar substrates could be allocated to nine phylogenetic clusters, including two novel TC clusters that are specific to fungi, i.e. the glycerol:H(+) symporter (2.A.1.1.38) and the high-affinity glucose transporter (2.A.1.1.39). Four phylogenetic clusters are identified by the preliminary fifth number Z23, Z24, Z25 and Z26 and the substrates of their members remain undetermined. The amplification of the SP clusters across the Hemiascomycetes reflects adaptation to specific carbon and energy sources available in the habitat of each yeast species.  相似文献   
543.
This paper reports the rheological behavior of chitosan solutions that have been cross-linked with different amounts of genipin, at body temperature and physiological pH. The effect of the cross-linker loading on the rheological properties of hydrogels has been evaluated. The oscillatory time sweep method was used to monitor the dynamic viscoelastic parameters during in situ (i.e., in the rheometer) gelation experiments, enabling the determination of the gelation time. The stress and frequency sweeps were employed to measure G' of the cured hydrogels. It was found that the solutions of chitosan cross-linked with genipin, under physiological conditions, could form relatively strong elastic gels when compared to those of pure chitosan. Moreover, the gelation time obtained from the crossover of G' and G' was in excellent agreement with the value obtained from the Winter-Chambon criterion. A significant reduction on this parameter was achieved even at low genipin concentrations. This behavior suggests that these formulations are able to be produced in situ and thus constitute promising matrices for cells and bioactive molecule encapsulations.  相似文献   
544.
Cutinase from Fusarium solani pisi was genetically modified near the active site, by site-directed mutagenesis, to enhance its activity towards polyethylene terephthalate (PET) and polyamide 6,6 (PA 6,6) fibers. The mutations L81A, N84A, L182A, V184A and L189A were done to enlarge the active site in order to better fit a larger polymer chain. Modeling studies have shown enhanced free energy stabilization of model substrate tetrahedral intermediate (TI) bound at the enzyme active site for all mutants, for both model polymers. L81A and L182A showed an activity increase of four- and five-fold, respectively, when compared with the wild type, for PET fibers. L182A showed the one- and two-fold higher ability to biodegrade aliphatic polyamide substrates. Further studies in aliphatic polyesters seem to indicate that cutinase has higher ability to recognize aliphatic substrates.  相似文献   
545.
Acute intravenous Tempol reduces mean arterial pressure (MAP) and heart rate (HR) in spontaneously hypertensive rats. We investigated the hypothesis that the antihypertensive action depends on generation of hydrogen peroxide, activation of heme oxygenase, glutathione peroxidase or potassium conductances, nitric oxide synthase, and/or the peripheral or central sympathetic nervous systems (SNSs). Tempol caused dose-dependent reductions in MAP and HR (at 174 micromol/kg; DeltaMAP, -57+/- 3 mmHg; and DeltaHR, -50 +/- 4 beats/min). The antihypertensive response was unaffected by the infusion of a pegylated catalase or by the inhibition of catalase with 3-aminotriazole, inhibition of glutathione peroxidase with buthionine sulfoximine, inhibition of heme oxygenase with tin mesoporphyrin, or inhibition of large-conductance Ca(2+)-activated potassium channels with iberiotoxin. However, the antihypertensive response was significantly (P < 0.01) blunted by 48% by the activation of adenosine 5'-triphosphate-sensitive potassium (K(ATP)) channels with cromakalim during maintenance of blood pressure with norepinephrine and by 31% by the blockade of these channels with glibenclamide, by 40% by the blockade of nitric oxide synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME), and by 40% by the blockade of ganglionic autonomic neurotransmission with hexamethonium. L-NAME and hexamethonium were additive, but glibenclamide and hexamethonium were less than additive. The central administration of Tempol was ineffective. The acute antihypertensive action of Tempol depends on the independent effects of potentiation of nitric oxide and inhibition of the peripheral SNS that involves the activation of K(ATP) channels.  相似文献   
546.
Porcine pancreatic elastase (PPE) was crystallized in complex with a novel inhibitor at pH 5 and X-ray diffraction data were collected at a synchrotron source to 1.66 A. Crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell parameters a = 50.25 A, b = 57.94 A and c = 74.69 A. PPE is often used as model for drug target, due to its structural homology with the important therapeutic target human leukocyte elastase (HLE). Elastase is a serine protease that belongs to the chymotrypsin family, which has the ability to degrade elastin, an important component in connective tissues. Excessive elastin proteolysis leads to a number of pathological diseases.  相似文献   
547.
The specification of a subset of epiblast cells to acquire a neural fate constitutes the first step in the generation of the nervous system. Little is known about the signals required for neural induction in the mouse. We have analysed the role of BMP signalling in this process. We demonstrate that prior to gastrulation, Bmp2/4 signalling via Bmpr1a maintains epiblast pluripotency and prevents precocious neural differentiation of this tissue, at least in part by maintaining Nodal signalling. We find that during gastrulation, BMPs of the 60A subgroup cooperate with Bmp2/4 to maintain pluripotency. The inhibition of neural fate by BMPs is independent of FGF signalling, as inhibition of FGF signalling between 5.5 and 7.5 days post-coitum does not block neural differentiation in the mouse embryo. Together, our results demonstrate that inhibition of BMP signalling has a central role during neural induction in mammals and suggest that FGFs do not act as neural inducers in the post-implantation mouse embryo.  相似文献   
548.
Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca2+ action potentials due to the activation of voltage-dependent Ca2+ channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca2+ release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca2+ release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca2+ from the endolysosomal system, resulting in localized Ca2+ signals. We show here that NAADP-mediated Ca2+ release from endolysosomal Ca2+ stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca2+ release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca2+ signals, and insulin secretion. Our findings implicate NAADP-evoked Ca2+ release from acidic Ca2+ storage organelles in stimulus-secretion coupling in β cells.  相似文献   
549.
Although the oxidative condensation of two thiosulfate anions to tetrathionate constitutes a well documented and significant part of the natural sulfur cycle, little is known about the enzymes catalyzing this reaction. In the purple sulfur bacterium Allochromatium vinosum, the reaction is catalyzed by the periplasmic diheme c-type cytochrome thiosulfate dehydrogenase (TsdA). Here, we report the crystal structure of the “as isolated” form of A. vinosum TsdA to 1.98 Å resolution and those of several redox states of the enzyme to different resolutions. The protein contains two typical class I c-type cytochrome domains wrapped around two hemes axially coordinated by His53/Cys96 and His164/Lys208. These domains are very similar, suggesting a gene duplication event during evolution. A ligand switch from Lys208 to Met209 is observed upon reduction of the enzyme. Cys96 is an essential residue for catalysis, with the specific activity of the enzyme being completely abolished in several TsdA-Cys96 variants. TsdA-K208N, K208G, and M209G variants were catalytically active in thiosulfate oxidation as well as in tetrathionate reduction, pointing to heme 2 as the electron exit point. In this study, we provide spectroscopic and structural evidence that the TsdA reaction cycle involves the transient presence of heme 1 in the high-spin state caused by movement of the Sγ atom of Cys96 out of the iron coordination sphere. Based on the presented data, we draw important conclusions about the enzyme and propose a possible reaction mechanism for TsdA.  相似文献   
550.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号