首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   390篇
  免费   19篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2016年   7篇
  2015年   16篇
  2014年   20篇
  2013年   17篇
  2012年   37篇
  2011年   27篇
  2010年   14篇
  2009年   16篇
  2008年   19篇
  2007年   19篇
  2006年   21篇
  2005年   13篇
  2004年   20篇
  2003年   8篇
  2002年   11篇
  2001年   6篇
  2000年   4篇
  1998年   5篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1992年   3篇
  1990年   3篇
  1988年   6篇
  1981年   4篇
  1979年   4篇
  1977年   2篇
  1976年   3篇
  1975年   7篇
  1973年   2篇
  1966年   2篇
  1958年   2篇
  1942年   2篇
  1938年   2篇
  1936年   2篇
  1935年   2篇
  1934年   3篇
  1933年   3篇
  1924年   1篇
  1916年   1篇
  1914年   1篇
  1910年   1篇
  1907年   2篇
  1906年   2篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
101.
The function of peroxiredoxins in plant organelle redox metabolism   总被引:1,自引:0,他引:1  
In 1996, cDNA sequences referred to as plant peroxiredoxins (Prx), i.e. a 1-Cys Prx and a 2-Cys Prx, were reported from barley. Ten years of research have advanced our understanding of plant Prx as thiol-based peroxide reductases with a broad substrate specificity, ranging from hydrogen peroxide to alkyl hydroperoxides and peroxinitrite. Prx have several features in common. (i) They are abundant proteins that are routinely detected in proteomics approaches. (ii) They interact with proteins such as glutaredoxins, thioredoxins, and cyclophilins as reductants, but also non-dithiol-disulphide exchange proteins. By work with transgenic plants, their activity was shown to (iii) affect metabolic integrity, (iv) protect DNA from damage in vitro and as shown here in vivo, and (v) modulate intracellular signalling related to reactive oxygen species and reactive nitrogen species. (vi) In all organisms Prx are encoded by small gene families that are of particular complexity in higher plants. A comparison of the Prx gene families in rice and Arabidopsis thaliana supports previous suggestions on Prx function in specific subcellular and metabolic context. (vii) Prx gene expression and activity are subjected to complex regulation realized by an integration of various signalling pathways. 2-Cys Prx expression depends on redox signals, abscisic acid, and protein kinase cascades. Besides these general properties, the chloroplast Prx have acquired specific roles in the context of photosynthesis. The thioredoxin-dependent peroxidase activity can be measured in crude plant extracts and contributes significantly to the overall H(2)O(2) detoxification capacity. Thus organellar Prx proteins enable an alternative water-water cycle for detoxification of photochemically produced H(2)O(2), which acts independently from the ascorbate-dependent Asada-Halliwell-Foyer cycle. 2-Cys Prx and Prx Q associate with thylakoid membrane components. The mitochondrial PrxII F is essential for root growth under stress. Following a more general introduction, the paper summarizes present knowledge on plant organellar Prx, addressing Prx in signalling, and also suggests some lines for future research.  相似文献   
102.
The integrin-linked kinase (ILK) serves as an adapter protein to link the cytoplasmic domains of integrins with cytoskeletal components. Organization of the actin cytoskeleton is strongly influenced by the small GTPase RhoA, which also regulates gene expression. To investigate the impact of ILK deficiency on RhoA-mediated signaling we used ILK-deficient fibroblasts. The cytoskeleton of ILK (-/-) cells was characterized by less organized F-actin fibers, compared to wild type mouse fibroblasts. Stimulation of the cells with lysophosphatidic acid (LPA) or the microtubule disrupting agent colchicine increased polymerization of F-actin stress fibers in ILK (+/+) cells, whereas ILK (-/-) cells showed a network of short thin cortical actin fibers, cell rounding and finally detachment from the surface of the culture plates. The structural changes were primarily attributable to the activation of RhoA in both cell types. ILK deficiency also affected gene expression. The basal levels of several proteins related to fibroblast differentiation, such as connective tissue growth factor (CTGF), thrombospondin 1 and alpha smooth muscle actin, were reduced in ILK (-/-) cells. However, induction of CTGF expression by LPA or colchicine was comparable in ILK (+/+) and ILK (-/-) cells. Furthermore, stimulation of CTGF or thrombospondin by TGFbeta was not reduced by ILK deficiency. Inhibition of the RhoA-associated kinase or overexpression of dominant negative RhoA reduced the stimulated CTGF expression indicative of a role for RhoA signaling in CTGF expression. Taken together, ILK is involved in RhoA-dependent reorganization of the actin cytoskeleton, whereas activation of RhoA and RhoA-mediated gene expression is independent of ILK.  相似文献   
103.
Cobbe N  Heck MM 《Proteins》2006,63(3):685-696
The SMC (structural maintenance of chromosomes) proteins are a highly conserved and ubiquitous family of ATPases, found in nearly all living organisms examined, where they play crucial roles in transmission of the hereditary material. However, the extent to which efficient ATP hydrolysis is required for SMC function has been a matter of some debate. Here we investigate the potential functional significance of ATP binding and hydrolysis in different eukaryotic SMC proteins, both by comparing the conservation of conserved ATPase motifs and by exploring potential coevolution between associated domains. In this way, we have been able to account for the reduced requirement for ATPase activity in cohesin's SMC3 and demonstrate the greater apparent conservation requirements for such activity in condensin SMC proteins. Finally, we explore possible interactions between the SMC and non-SMC components of the condensin complex that are required for full condensin activity and may modulate ATPase activity in the holocomplex.  相似文献   
104.
Crystallography-driven optimisation of a lead derived from similarity searching of the GSK compound collection resulted in the discovery of a series of quinoline derivatives that were highly potent and selective inhibitors of PDE4 with a good pharmacokinetic profile in the rat. Quinolines 43 and 48 have potential as oral medicines for the treatment of COPD  相似文献   
105.
Myofibroblasts are the main cell types producing extracellular matrix proteins in a variety of fibrotic diseases. Therefore, they are useful targets for studies of intracellular communication and gene therapeutical approaches in scarring diseases. An artificial promoter containing the −702 bp regulatory sequence of the α-smooth muscle actin (SMA) gene linked to the first intron enhancer sequence of the β-actin gene and the β-globin intron-exon junction was constructed and tested for myofibroblast-dependent gene expression using the green fluorescent protein as a reporter. Reporter expression revealed myofibroblast-specific function in hepatic and renal myofibroblasts, in vitro. In addition, differentiation-dependent activation of the SMA-β-actin promoter hybrid was shown after induction of myofibroblastic features in mesangial cells by stretching treatment. Furthermore, wound healing experiments with SMA-β-actin promoter reporter mice demonstrated myofibroblast-specific action, in vivo. In conclusion, the −702 bp regulatory region of the SMA promoter linked to enhancing β-actin and β-globin sequences benefits from its small size and is suggested as a promising tool to target myofibroblasts as the crucial cell type in various scarring processes.  相似文献   
106.

Background

Profilin-1 is an ubiquitous actin binding protein. Under pathological conditions such as diabetes, profilin-1 levels are increased in the vascular endothelium. We recently demonstrated that profilin-1 overexpression triggers indicators of endothelial dysfunction downstream of LDL signaling, and that attenuated expression of profilin-1 confers protection from atherosclerosis in vivo.

Methodology

Here we monitored profilin-1 expression in human atherosclerotic plaques by immunofluorescent staining. The effects of recombinant profilin-1 on atherogenic signaling pathways and cellular responses such as DNA synthesis (BrdU-incorporation) and chemotaxis (modified Boyden-chamber) were evaluated in cultured rat aortic and human coronary vascular smooth muscle cells (VSMCs). Furthermore, the correlation between profilin-1 serum levels and the degree of atherosclerosis was assessed in humans.

Principal Findings

In coronary arteries from patients with coronary heart disease, we found markedly enhanced profilin expression in atherosclerotic plaques compared to the normal vessel wall. Stimulation of rat aortic and human coronary VSMCs with recombinant profilin-1 (10−6 M) in vitro led to activation of intracellular signaling cascades such as phosphorylation of Erk1/2, p70S6 kinase and PI3K/Akt within 10 minutes. Furthermore, profilin-1 concentration-dependently induced DNA-synthesis and migration of both rat and human VSMCs, respectively. Inhibition of PI3K (Wortmannin, LY294002) or Src-family kinases (SU6656, PP2), but not PLCγ (U73122), completely abolished profilin-induced cell cycle progression, whereas PI3K inhibition partially reduced the chemotactic response. Finally, we found that profilin-1 serum levels were significantly elevated in patients with severe atherosclerosis in humans (p<0.001 vs. no atherosclerosis or control group).

Conclusions

Profilin-1 expression is significantly enhanced in human atherosclerotic plaques compared to the normal vessel wall, and the serum levels of profilin-1 correlate with the degree of atherosclerosis in humans. The atherogenic effects exerted by profilin-1 on VSMCs suggest an auto-/paracrine role within the plaque. These data indicate that profilin-1 might critically contribute to atherogenesis and may represent a novel therapeutic target.  相似文献   
107.

Background

Glucocorticoid-mediated inhibition of angiogenesis is important in physiology, pathophysiology and therapy. However, the mechanisms through which glucocorticoids inhibit growth of new blood vessels have not been established. This study addresses the hypothesis that physiological levels of glucocorticoids inhibit angiogenesis by directly preventing tube formation by endothelial cells.

Methodology/Principal Findings

Cultured human umbilical vein (HUVEC) and aortic (HAoEC) endothelial cells were used to determine the influence of glucocorticoids on tube-like structure (TLS) formation, and on cellular proliferation (5-bromo-2′-deoxyuridine (BrdU) incorporation), viability (ATP production) and migration (Boyden chambers). Dexamethasone or cortisol (at physiological concentrations) inhibited both basal and prostaglandin F (PGF)-induced and vascular endothelial growth factor (VEGF) stimulated TLS formation in endothelial cells (ECs) cultured on Matrigel, effects which were blocked with the glucocorticoid receptor antagonist RU38486. Glucocorticoids had no effect on EC viability, migration or proliferation. Time-lapse imaging showed that cortisol blocked VEGF-stimulated cytoskeletal reorganisation and initialisation of tube formation. Real time PCR suggested that increased expression of thrombospodin-1 contributed to glucocorticoid-mediated inhibition of TLS formation.

Conclusions/Significance

We conclude that glucocorticoids interact directly with glucocorticoid receptors on vascular ECs to inhibit TLS formation. This action, which was conserved in ECs from two distinct vascular territories, was due to alterations in cell morphology rather than inhibition of EC viability, migration or proliferation and may be mediated in part by induction of thrombospodin-1. These findings provide important insights into the anti-angiogenic action of endogenous glucocorticoids in health and disease.  相似文献   
108.
A versatile, multidimensional, and non-denaturing proteome separation procedure using microplate technology is presented, yielding a digitized image of proteome composition. In the first dimension, the sample under study is separated into 96 fractions by size exclusion chromatography (SEC). In the second dimension, the fractions of the first dimension are transferred by the liquid-handling device CyBi-Well (CyBio AG, Jena, Germany) to 96 parallel anion exchange chromatography columns. In this way the proteins are conserved in their native states and are distributed in 2400 liquid fractions with high recovery rates and sufficient reproducibility. The resulting fractions are subjected to protein quantitation and identification. Spectrophotometrical and immunological methods and enzyme activity measurements are used for quantitation. To identify proteins, the fractions are subjected to MALDI-MS, and their tryptic digests to both MALDI- and LC-ESI-MS/MS. All preparation steps except the first are applied in parallel to sets of multiples of 96 samples. The procedure may be refined by adding more separation steps and may be adapted to various protein amounts and to various proteomes. Moreover, the method offers the opportunity to investigate functional protein complexes. The method was applied to separate the normal human serum proteome. Within 255 fractions exhibiting the highest protein concentrations, 742 proteins were identified by LC-ESI-MS/MS peptide sequence tags.  相似文献   
109.
Nuclear genome size variation was studied in eight taxa of Passiflora. Nuclear DNA content was estimated by flow cytometry of nuclei stained by propidium iodide. 2C DNA content ranged from 3.16-5.36 pg for diploids and 1.83 pg for tetraploid. Differences in nuclear genome size were observed among Passiflora species (pg): P. suberosa 1.83, P. edulis f. edulis 3.16, P. edulis f. flavicarpa (Brazil) 3.19, P. edulis f. flavicarpa (Mexico) 3.21, P. mucronata 3.40, Passiflora edmundoi 3.43, P. laurifolia 3.88, P. giberti 3.92, P. quadrangularis 5.36, the largest value being up to 192% greater than the smallest. The means of 2C DNA content were compared by the Tukey test, and the differences in genome size permitted the recognition of five taxa groups. The result was the same for the means 2C genome size (Mbp) values. The genetic parameters were studied with their respective estimators, phenotypic variance (sigma2F), genotypic variability (PhiG), and the genotypic determination index (H2). The genotypic determination index presented high magnitude estimates (greater than 99%) emphasizing the reliability of the results and demonstrating the efficiency of determining the DNA content in the species using only one leaf per plant. Passiflora species show great phenotypic variability and have different geographic distribution that might implicate in genetic diversity.  相似文献   
110.
The SMC proteins are found in nearly all living organisms examined, where they play crucial roles in mitotic chromosome dynamics, regulation of gene expression, and DNA repair. We have explored the phylogenetic relationships of SMC proteins from prokaryotes and eukaryotes, as well as their relationship to similar ABC ATPases, using maximum-likelihood analyses. We have also investigated the coevolution of different domains of eukaryotic SMC proteins and attempted to account for the evolutionary patterns we have observed in terms of available structural data. Based on our analyses, we propose that each of the six eukaryotic SMC subfamilies originated through a series of ancient gene duplication events, with the condensins evolving more rapidly than the cohesins. In addition, we show that the SMC5 and SMC6 subfamily members have evolved comparatively rapidly and suggest that these proteins may perform redundant functions in higher eukaryotes. Finally, we propose a possible structure for the SMC5/SMC6 heterodimer based on patterns of coevolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号