首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   24篇
  565篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   7篇
  2016年   9篇
  2015年   13篇
  2014年   16篇
  2013年   21篇
  2012年   31篇
  2011年   24篇
  2010年   18篇
  2009年   11篇
  2008年   28篇
  2007年   38篇
  2006年   35篇
  2005年   32篇
  2004年   37篇
  2003年   32篇
  2002年   33篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   8篇
  1995年   7篇
  1994年   5篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   10篇
  1982年   12篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1977年   4篇
  1976年   4篇
  1975年   7篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1968年   2篇
排序方式: 共有565条查询结果,搜索用时 0 毫秒
81.
The aim of this study was to investigate if consumption of ordinary carbohydrate-rich food prepared in different ways has an impact on chromosome stability, i.e., on the formation of micronucleated young erythrocytes in humans. Twenty-four persons, divided into two groups, participated during 4 days in a semi-controlled food-consumption study. One group (low-heated-food-group, LowHF-group) consumed only food boiled in water (max 100 degrees C) and the other group (high-heated-food-group, HighHF-group) consumed preferentially strongly heated (fried) food. From each of the subjects, blood samples were drawn, before and after 4 days. The frequency (f) of micronucleated (MN) very young erythrocytes (transferrin-positive reticulocytes, Trf-Ret), fMNTrf-Ret, was determined, and the difference in the frequency, before and after the eating period, was calculated. The obtained mean differences for the two groups were compared. As an indicator of highly heated food the acrylamide (AA) content in part of the consumed foodstuffs was analysed by use of LC/MS-MS and the AA intake estimated. In the blood samples the hemoglobin-adduct levels from AA were analysed as a measure of the internal AA dose. The differences between the mean fMNTrf-Ret, before and after the eating period, were -0.15 per thousand for the LowHF-group and +0.17 per thousand for the HighHF-group, p<0.005 (t-test, one-tailed). The mean total AA intake in the HighHF-group during 4 days was estimated to about 3000+/-450microg per person. For the LowHF-group, the mean AA intake was low, 20+/-10microg per person. The lowest dose of AA that caused a significant increase of micronucleated erythrocytes in mice is more than a hundred times higher than the AA level in this study. Thus, it is unlikely that the exposure to AA is the major cause behind the observed difference. The answer is probably to be found in other compounds produced at the same time during heating of the food.  相似文献   
82.
The bi‐directional movement of pigment granules in frog melanophores involves the microtubule‐based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin  II and myosin  V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin  II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150glued and Arp1/centractin, co‐localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co‐immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   
83.
The catalytic mechanism for peptide hydrolysis by thermolysin has been investigated using the B3LYP hybrid density functional method. The starting structure for the calculations was based on the X-ray crystal structure of the enzyme inhibited with the ZF (p)LA phosphonamidate transition-state analogue. Besides the three Zn ligands His142, His146 and Glu166, a few additional residues were also included in the model. Following the order of importance, the outer-sphere ligands Glu143, His231 and Asp226 were shown to play significant catalytic roles, well correlated with results from site-directed mutagenesis experiments. A single-step reaction mechanism was obtained starting from the initial enzyme-substrate complex with a pentacoordinated metal center and proceeding to the enzyme-carboxylate complex as a final product, following a proposal by Matthews and co-workers. The transition state combines a nucleophilic water oxygen attack on the peptide carbon and a proton transfer from the water to the peptide nitrogen, mediated by the Glu143 carboxylate. A free activation energy of 15.2 kcal/mol was obtained, compared to the experimental 12.4-16.3 kcal/mol range for various peptide substrates. An interesting aspect of the present single-step mechanism is that the Glu143 carboxylate moves a significant distance of ~1.0 A. Different chemical models were examined, both related to the system size and proper side-chain modeling. The significance of the protein frame rigidity around the active site was estimated by fixing and subsequently releasing the edge atom positions. Finally, alternative mechanistic proposals are briefly summarized.  相似文献   
84.
The mechanism for the reaction between nitric oxide (NO) and O2 bound to the heme iron of myoglobin (Mb), including the following isomerization to nitrate, has been investigated using hybrid density functional theory (B3LYP). Myoglobin working as a NO scavenger could be of importance, since NO reversibly inhibits the terminal enzyme in the respiration chain, cytochrome c oxidase. The concentration of NO in the cell will thus affect the respiration and thereby the synthesis of ATP. The calculations show that the reaction between NO and the heme-bound O2 gives a peroxynitrite intermediate whose O–O bond undergoes a homolytic cleavage, forming a NO2 radical and myoglobin in the oxo-ferryl state. The NO2 radical then recombines with the oxo-ferryl, forming heme-bound nitrate. Nine different models have been used in the present study to examine the effect on the reaction both by the presence and the protonation state of the distal His64, and by the surroundings of the proximal His93. The barriers going from the oxy-Mb and nitric oxide reactant to the peroxynitrite intermediate and further to the oxo-ferryl and NO2 radical are around 10 and 7 kcal/mol, respectively. Forming the product, nitrate bound to the heme iron has a barrier of less than ~7 kcal/mol. The overall reaction going from a free nitric oxide and oxy-Mb to the heme bound nitrate is exergonic by more than 30 kcal/mol.  相似文献   
85.
86.
Energy diagrams and mechanism for proton pumping in cytochrome c oxidase   总被引:1,自引:0,他引:1  
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a(3) as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pK(a) values during the pumping process are derived for comparison to experiments.  相似文献   
87.
The activation energy and activation volume of the spectral blue shift subsequent to protochlorophyllide phototransformation (called Shibata shift in intact leaves) were studied in prolamellar body (PLB) and prothylakoid-(PT)-enriched membrane fractions prepared from dark-grown wheat (Triticum aestivum, L.) leaves. The measurements were done at 20, 30 and 40 degrees C and at various pressure values. The activation energy values were 181+/-8 kJ mol(-1) and 188+/-6 kJ mol(-1) for the PLBs and the PTs, respectively. The pressure stabilized the structure of the NADPH:protochlorophyllide oxidoreductase (POR) macrodomains; it prevented or slowed down the blue shift. There were no significant differences between the activation volumes of PLBs and PTs at 30 or 40 degrees C giving values around 100-125 ml mol(-1) which correspond to changes in the tertiary structure of proteins but also resemble the volume changes occurring during the disaggregation of protein dimers or oligomers, or during dissociation of peripheral membrane proteins from membranes. The small differences in the activation parameters of PLBs and PTs indicate that molecular rearrangements inside the POR macrodomains are the primary reasons of the fluorescence blue shift; however, their lipid microenvironment must be also important in the initialization of the shift.  相似文献   
88.
The powerful technique of energy diagrams has been used to analyze the mechanism for proton pumping in cytochrome c oxidase. Energy levels and barriers are derived starting out from recent kinetic experiments for the O to E transition, and are then refined using general criteria and a few additional experimental facts. Both allowed and non-allowed pathways are obtained in this way. A useful requirement is that the forward and backward rate should approach each other for the full membrane gradient. A key finding is that an electron on heme a (or the binuclear center) must have a significant lowering effect on the barrier for proton uptake, in order to prevent backflow from the pump-site to the N-side. While there is no structural gating in the present mechanism, there is thus an electronic gating provided by the electron on heme a. A quantitative analysis of the energy levels in the diagrams, leads to Prop-A of heme a3 as the most likely position for the pump-site, and the Glu278 region as the place for the transition state for proton uptake. Variations of key redox potentials and pKa values during the pumping process are derived for comparison to experiments.  相似文献   
89.
The prolamellar body (PLB) proteome of dark-grown wheat leaves was characterized. PLBs are formed not only in etioplasts but also in chloroplasts in young developing leaves during the night, yet their function is not fully understood. Highly purified PLBs were prepared from 7-day-old dark-grown leaves and identified by their spectral properties as revealed by low-temperature fluorescence spectroscopy. The PLB preparation had no contamination of extra-plastidal proteins, and only two envelope proteins were found. The PLB proteome was analysed by a combination of 1-D SDS-PAGE and nano-LC FTICR MS. The identification of chlorophyll synthase in the PLB fraction is the first time this enzyme protein was found in extracts of dark-grown plants. This finding is in agreement with its previous localization to PLBs using activity studies. NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyses the reduction of protochlorophyllide to chlorophyllide, dominates the proteome of PLBs. Besides the identification of the PORA protein, the PORB protein was identified for the first time in dark-grown wheat. Altogether 64 unique proteins, representing pigment biosynthesis, photosynthetic light reaction, Calvin cycle proteins, chaperones and protein synthesis, were identified. The in number of proteins’ largest group was the one involved in photosynthetic light reactions. This fact strengthens the assumption that the PLB membranes are precursors to the thylakoids and used for the formation of the photosynthetic membranes during greening. The present work is important to enhance our understanding of the significance of PLBs in chloroplast development.  相似文献   
90.
The time course of absorbance changes following flash photolysis of the fully-reduced carboxycytochrome oxidase fromBacillus PS3 in the presence of O2 has been followed at 445, 550, 605, and 830 nm, and the results have been compared with the corresponding changes in bovine cytochrome oxidase. The PS3 enzyme has a covalently bound cytochromec subunit and the fully-reduced species therefore accommodates five electrons instead of four as in the bovine enzyme. In the bovine enzyme, following CO dissociation, four phases were observed with time constants of about 10 s, 30 s, 100 s, and 1 ms at 445 nm. The initial, 10-s absorbance change at 445 nm is similar in the two enzymes. The subsequent phases involving hemea and CuA are not seen in the PS3 enzyme at 445 nm, because these redox centers are re-reduced by the covalently bound cytochromec, as indicated by absorbance changes at 550 nm. A reaction scheme consistent with the experimental observations is presented. In addition, internal electron-transfer reactions in the absence of O2 were studied following flash-induced CO dissociation from the mixed-valence enzyme. Comparisons of the CO recombination rates in the mixed-valence and fully-reduced oxidases indicate that more electrons were transferred from hemea 3 toa in PS3 oxidase compared to the bovine enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号