首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7054篇
  免费   694篇
  国内免费   3篇
  2022年   48篇
  2021年   107篇
  2020年   50篇
  2019年   51篇
  2018年   73篇
  2017年   84篇
  2016年   138篇
  2015年   257篇
  2014年   276篇
  2013年   380篇
  2012年   426篇
  2011年   393篇
  2010年   285篇
  2009年   246篇
  2008年   384篇
  2007年   390篇
  2006年   370篇
  2005年   359篇
  2004年   361篇
  2003年   378篇
  2002年   340篇
  2001年   90篇
  2000年   56篇
  1999年   78篇
  1998年   125篇
  1997年   81篇
  1996年   69篇
  1995年   80篇
  1994年   47篇
  1993年   70篇
  1992年   57篇
  1991年   66篇
  1990年   55篇
  1989年   41篇
  1988年   46篇
  1987年   62篇
  1986年   53篇
  1985年   55篇
  1984年   75篇
  1983年   43篇
  1982年   58篇
  1981年   68篇
  1980年   55篇
  1978年   56篇
  1977年   40篇
  1976年   41篇
  1974年   54篇
  1973年   52篇
  1972年   36篇
  1961年   36篇
排序方式: 共有7751条查询结果,搜索用时 33 毫秒
961.
The belly button is one of the habitats closest to us, and yet it remains relatively unexplored. We analyzed bacteria and arachaea from the belly buttons of humans from two different populations sampled within a nation-wide citizen science project. We examined bacterial and archaeal phylotypes present and their diversity using multiplex pyrosequencing of 16S rDNA libraries. We then tested the oligarchy hypothesis borrowed from tropical macroecology, namely that the frequency of phylotypes in one sample of humans predicts its frequency in another independent sample. We also tested the predictions that frequent phylotypes (the oligarchs) tend to be common when present, and tend to be more phylogenetically clustered than rare phylotypes. Once rarefied to four hundred reads per sample, bacterial communities from belly buttons proved to be at least as diverse as communities known from other skin studies (on average 67 bacterial phylotypes per belly button). However, the belly button communities were strongly dominated by a few taxa: only 6 phylotypes occurred on >80% humans. While these frequent bacterial phylotypes (the archaea were all rare) are a tiny part of the total diversity of bacteria in human navels (<0.3% of phylotypes), they constitute a major portion of individual reads (∼1/3), and are predictable among independent samples of humans, in terms of both the occurrence and evolutionary relatedness (more closely related than randomly drawn equal sets of phylotypes). Thus, the hypothesis that “oligarchs” dominate diverse assemblages appears to be supported by human-associated bacteria. Although it remains difficult to predict which species of bacteria might be found on a particular human, predicting which species are most frequent (or rare) seems more straightforward, at least for those species living in belly buttons.  相似文献   
962.

Background

Severe alpha1-antitrypsin (AAT) deficiency is a strong risk factor for COPD. But the impact of gene variants resulting in mild or intermediate AAT deficiency on the longitudinal course of respiratory health remains controversial. There is indication from experimental studies that pro-inflammatory agents like cigarette smoke can interact with these variants and thus increase the risk of adverse respiratory health effects. Therefore, we tested the effect of the presence of a protease inhibitor (Pi) S or Z allele (PiMS and PiMZ) on the change in lung function in different inflammation-exposed subgroups of a large, population-based cohort study.

Methodology and Principal Findings

The SAPALDIA population includes over 4600 subjects from whom SERPINA1 genotypes for S and Z alleles, spirometry and respiratory symptoms at baseline and after 11 years follow-up, as well as proxies for inflammatory conditions, such as detailed smoking history, obesity and high sensitivity C-reactive protein (hs-CRP), were available. All analyses were performed by applying multivariate regression models. There was no overall unfavourable effect of PiMS or PiMZ genotype on lung function change. We found indication that PiZ heterozygosity interacted with inflammatory stimuli leading to an accelerated decline in measures in use as indices for assessing mild airway obstruction. Obese individuals with genotype PiMM had an average annual decline in the forced mid expiratory flow (ΔFEF25-75%) of 58.4 ml whereas in obese individuals with PiMZ it amounted to 92.2 ml (p = 0.03). Corresponding numbers for persistent smokers differed even more strongly (66.8 ml (PiMM) vs. 108.2 ml (PiMZ), p = 0.005). Equivalent, but less strong associations were observed for the change in the FEV1/FVC ratio.

Conclusions

We suggest that, in addition to the well established impact of the rare PiZZ genotype, one Z allele may be sufficient to accelerate lung function decline in population subgroups characterized by elevated levels of low grade inflammation.  相似文献   
963.
Obesity has been linked to the human gut microbiota; however, the contribution of gut bacterial species to the obese phenotype remains controversial because of conflicting results from studies in different populations. To explore the possible dysbiosis of gut microbiota in obesity and its metabolic complications, we studied men and women over a range of body mass indices from the Old Order Amish sect, a culturally homogeneous Caucasian population of Central European ancestry. We characterized the gut microbiota in 310 subjects by deep pyrosequencing of bar-coded PCR amplicons from the V1-V3 region of the 16S rRNA gene. Three communities of interacting bacteria were identified in the gut microbiota, analogous to previously identified gut enterotypes. Neither BMI nor any metabolic syndrome trait was associated with a particular gut community. Network analysis identified twenty-two bacterial species and four OTUs that were either positively or inversely correlated with metabolic syndrome traits, suggesting that certain members of the gut microbiota may play a role in these metabolic derangements.  相似文献   
964.
The prefrontal cortex (PFC) develops from birth through late adolescence. This extended developmental trajectory provides many opportunities for experience to shape the structure and function of the PFC. To date, a few studies have reported links between parental socioeconomic status (SES) and prefrontal function in childhood, raising the possibility that aspects of environment associated with SES impact prefrontal function. Considering that behavioral measures of prefrontal function are associated with learning across multiple domains, this is an important area of investigation. In this study, we used fMRI to replicate previous findings, demonstrating an association between parental SES and PFC function during childhood. In addition, we present two hypothetical mechanisms by which SES could come to affect PFC function of this association: language environment and stress reactivity. We measured language use in the home environment and change in salivary cortisol before and after fMRI scanning. Complexity of family language, but not the child's own language use, was associated with both parental SES and PFC activation. Change in salivary cortisol was also associated with both SES and PFC activation. These observed associations emphasize the importance of both enrichment and adversity-reduction interventions in creating good developmental environments for all children.  相似文献   
965.

Background

Endothelial-Monocyte Activating Polypeptide (EMAP II) is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date.

Methodology/Principal Findings

Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration.

Conclusions/Significance

Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.  相似文献   
966.
Cuddapah S  Roh TY  Cui K  Jose CC  Fuller MT  Zhao K  Chen X 《PloS one》2012,7(5):e36365
Polycomb group (PcG) proteins are key chromatin regulators implicated in multiple processes including embryonic development, tissue homeostasis, genomic imprinting, X-chromosome inactivation, and germ cell differentiation. The PcG proteins recognize target genomic loci through cis DNA sequences known as Polycomb Response Elements (PREs), which are well characterized in Drosophila. However, mammalian PREs have been elusive until two groups reported putative mammalian PREs recently. Consistent with the existence of mammalian PREs, here we report the identification and characterization of a potential PRE from human T cells. The putative human PRE has enriched binding of PcG proteins, and such binding is dependent on a key PcG component SUZ12. We demonstrate that the putative human PRE carries both genetic and molecular features of Drosophila PRE in transgenic flies, implying that not only the trans PcG proteins but also certain features of the cis PREs are conserved between mammals and Drosophila.  相似文献   
967.
TY Jiang  YP Ci  WI Chou  YC Lee  YJ Sun  WY Chou  KM Li  MD Chang 《PloS one》2012,7(7):e41131
The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD) has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21) members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.  相似文献   
968.
Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40-50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4(+)Foxp3(+) T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response.  相似文献   
969.
Siderocalin (also lipocalin 2, NGAL or 24p3) binds iron as complexes with specific siderophores, which are low molecular weight, ferric ion-specific chelators. In innate immunity, siderocalin slows the growth of infecting bacteria by sequestering bacterial ferric siderophores. Siderocalin also binds simple catechols, which can serve as siderophores in the damaged urinary tract. Siderocalin has also been proposed to alter cellular iron trafficking, for instance, driving apoptosis through iron efflux via BOCT. An endogenous siderophore composed of gentisic acid (2,5-dihydroxybenzoic acid) substituents was proposed to mediate cellular efflux. However, binding studies reported herein contradict the proposal that gentisic acid forms high-affinity ternary complexes with siderocalin and iron, or that gentisic acid can serve as an endogenous siderophore at neutral pH. We also demonstrate that siderocalin does not induce cellular iron efflux or stimulate apoptosis, questioning the role siderocalin plays in modulating iron metabolism.  相似文献   
970.
Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR) thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR) and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency. GRA1 inhibited glycogenolysis dose-dependently in primary human hepatocytes and in perfused liver from hGCGR mice, a transgenic line of mouse that expresses the hGCGR instead of the murine GCGR. When administered orally to hGCGR mice and rhesus monkeys, GRA1 blocked hyperglycemic responses to exogenous glucagon. In several murine models of diabetes, acute and chronic dosing with GRA1 significantly reduced blood glucose concentrations and moderately increased plasma glucagon and glucagon-like peptide-1. Combination of GRA1 with a dipeptidyl peptidase-4 inhibitor had an additive antihyperglycemic effect in diabetic mice. Hepatic gene-expression profiling in monkeys treated with GRA1 revealed down-regulation of numerous genes involved in amino acid catabolism, an effect that was paralleled by increased amino acid levels in the circulation. In summary, GRA1 is a potent glucagon receptor antagonist with strong antihyperglycemic efficacy in preclinical models and prominent effects on hepatic gene-expression related to amino acid metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号