首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   52篇
  2023年   8篇
  2022年   11篇
  2021年   14篇
  2020年   17篇
  2019年   17篇
  2018年   24篇
  2017年   17篇
  2016年   29篇
  2015年   39篇
  2014年   49篇
  2013年   32篇
  2012年   52篇
  2011年   42篇
  2010年   23篇
  2009年   19篇
  2008年   33篇
  2007年   40篇
  2006年   23篇
  2005年   37篇
  2004年   28篇
  2003年   18篇
  2002年   17篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有637条查询结果,搜索用时 15 毫秒
131.
The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral‐associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species’ preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.  相似文献   
132.
Klich  Maren A. 《Mycopathologia》1998,142(2):97-100
Soil is presumed to be a major source of inoculum for Aspergillus flavus which contaminates cottonseed and produces the potent carcinogen, aflatoxin. Little is known about the mycoflora of the low desert soils of cotton fields where aflatoxin is a chronic problem. In this study, soils from cotton fields in southwestern Arizona and southeastern California were assayed for filamentous fungi. Forty-two taxa, predominantly in the genera Aspergillus, Penicillium and Fusarium, were isolated. To determine whether or not compounds produced by these fungi could be potential inhibitors of A. flavus, extracts of strains of each taxon were tested for their ability to inhibit growth of A. flavus. Twelve taxa produced compounds inhibitory to A. flavus, including several strains of Fusarium solani, Penicillium vinaceum and Aspergillus auricomus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
133.
Yos9 is an essential component of the endoplasmic reticulum associated protein degradation (ERAD) system that is responsible for removing terminally misfolded proteins from the ER lumen and mediating proteasomal degradation in the cytosol. Glycoproteins that fail to attain their native conformation in the ER expose a distinct oligosaccharide structure, a terminal α1,6-linked mannose residue, that is specifically recognized by the mannose 6-phoshate receptor homology (MRH) domain of Yos9. We have determined the structure of the MRH domain of Yos9 in its free form and complexed with 3α, 6α-mannopentaose. We show that binding is achieved by loops between β-strands performing an inward movement and that this movement also affects the entire β-barrel leading to a twist. These rearrangements may facilitate the processing of client proteins by downstream acting factors. In contrast, other oligosaccharides such as 2α-mannobiose bind weakly with only locally occurring chemical shift changes underscoring the specificity of this substrate selection process within ERAD.  相似文献   
134.
Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982–2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C‐weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C‐weeks). A similar pattern was observed during the 2015–2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C‐weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C‐weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef‐building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef‐building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance.  相似文献   
135.
It is widely accepted that development of autoimmunity in the central nervous system (CNS) is triggered by autoreactive T cells, that are activated in the periphery and gain the capacity to migrate through endothelial cells at the blood–brain barrier (BBB) into the CNS. Upon local reactivation, an inflammatory cascade is initiated, that subsequently leads to a recruitment of additional immune cells ultimately causing demyelination and axonal damage. Even though the interaction of immune cells with the BBB has been in the focus of research for many years, the exact mechanisms of how immune cells enter and exit the CNS remains poorly understood. In this line, the factors deciding immune cell entry routes, lesion formation, cellular composition as well as distribution within the CNS have also not been elucidated. The following factors have been proposed to represent key determinants for lesion evaluation and distribution: (i) presence and density of (auto) antigens in the CNS, (ii) local immune milieu at sites of lesion development and resolution, (iii) trafficking routes and specific trafficking requirements, especially at the BBB and (iv) characteristics and phenotypes of CNS infiltrating cells and cell subsets (e.g. features of T helper subtypes or CD8 cells). The heterogeneity of lesion development within inflammatory demyelinating diseases remains poorly understood until today, but here especially orphan inflammatory CNS disorders such as neuromyelitis optica spectrum disorder (NMOSD), Rasmussen encephalitis or SUSAC syndrome might give important insights in critical determinants of lesion topography. Finally, investigating the interaction of T cells with the BBB using in vitro approaches or tracking of T cells in vivo in animals or even human patients, as well as the discovery of lymphatic vasculature in the CNS are teaching us new aspects during the development of CNS autoimmunity. In this review, we discuss recent findings which help to unravel mechanisms underlying lesion topography and might lead to new diagnostic or therapeutic approaches in neuroinflammatory disorders including multiple sclerosis (MS).

  相似文献   

136.
RomA is a SET-domain containing protein lysine methyltransferase encoded by the Gram-negative bacterium Legionella pneumophila. It is exported into human host cells during infection and has been previously shown to methylate histone H3 at lysine 14 [Rolando et al. (2013), Cell Host Microbe, 13, 395–405]. Here, we investigated the substrate specificity of RomA on peptide arrays showing that it mainly recognizes a G-K-X-(PA) sequence embedded in a basic amino acid sequence context. Based on the specificity profile, we searched for possible additional RomA substrates in the human proteome and identified 34 novel peptide substrates. For nine of these, the corresponding full-length protein or protein domains could be cloned and purified. Using radioactive and antibody-based methylation assays, we showed that seven of them are methylated by RomA, four of them strongly, one moderately, and two weakly. Mutagenesis confirmed for the seven methylated proteins that methylation occurs at target lysine residues fitting to the specificity profile. Methylation of one novel substrate (AROS) was investigated in HEK293 cells overexpressing RomA and during infection with L. pneumophila. Methylation could be detected in both conditions, confirming that RomA methylates non-histone proteins in human cells. Our data show that the bacterial methyltransferase RomA methylates also human non-histone proteins suggesting a multifaceted role in the infection process.  相似文献   
137.
TNF signaling is directly linked to cancer development and progression. A broad range of tumor cells is able to evade cell death induced by TNF impairing the potential anti-cancer value of TNF in therapy. Although sensitizing cells to TNF-induced death therefore has great clinical implications, detailed mechanistic insights into TNF-mediated human cell death still remain unknown. Here, we analyzed human cells by applying CRISPR/Cas9n to generate cells deficient of IKK1, IKK2, IKK1/2 and RELA. Despite stimulation with TNF resulted in impaired NF-κB activation in all genotypes compared to wildtype cells, increased cell death was observable only in IKK1/2-double-deficient cells. Cell death could be detected by Caspase-3 activation and binding of Annexin V. TNF-induced programmed cell death in IKK1/2?/? cells was further shown to be mediated via RIPK1 in a predominantly apoptotic manner. Our findings demonstrate the IKK complex to protect from TNF-induced cell death in human cells independently to NF-κB RelA suggesting IKK1/2 to be highly promising targets for cancer therapy.  相似文献   
138.
139.
Reduced precipitation treatments often are used in field experiments to explore the effects of drought on plant productivity and species composition. However, in seasonally snow-covered regions reduced precipitation also reduces snow cover, which can increase soil frost depth, decrease minimum soil temperatures and increase soil freeze–thaw cycles. Therefore, in addition to the effects of reduced precipitation on plants via drought, freezing damage to overwintering plant tissues at or below the soil surface could further affect plant productivity and relative species abundances during the growing season. We examined the effects of both reduced rainfall (via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily grasslands) within the framework of the International Drought Experiment, a coordinated distributed experiment. Plant cover was estimated at the species level, and aboveground biomass was quantified at the functional group level. Among sites, we observed a negative correlation between the snow removal effect on minimum soil temperature and plant biomass production the next growing season. Three sites exhibited significant rain-out shelter effects on plant productivity, but there was no correlation among sites between the rain-out shelter effect on minimum soil moisture and plant biomass. There was no interaction between snow removal and rain-out shelters for plant biomass, although these two factors only exhibited significant effects simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it decreases minimum soil temperatures, can be an important component of the total effect of reduced precipitation on plant productivity.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号