首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   33篇
  357篇
  2023年   2篇
  2022年   3篇
  2021年   12篇
  2020年   8篇
  2019年   9篇
  2018年   9篇
  2017年   15篇
  2016年   20篇
  2015年   24篇
  2014年   25篇
  2013年   30篇
  2012年   36篇
  2011年   27篇
  2010年   22篇
  2009年   17篇
  2008年   11篇
  2007年   21篇
  2006年   9篇
  2005年   13篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   3篇
  1996年   1篇
  1992年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
  1970年   2篇
  1969年   4篇
  1968年   2篇
  1966年   1篇
  1951年   1篇
  1939年   1篇
排序方式: 共有357条查询结果,搜索用时 19 毫秒
281.
282.
Polyphenol oxidases (PPOs) catalyze the oxidation of ortho-diphenols to the corresponding quinones (EC 1.10.3.1). In plants PPOs appear in gene families, and the corresponding isoenzymes are located to the thylakoid lumen of chloroplasts. Although plant PPOs are often discussed with regard to their role in defense reactions, a common physiological function has not yet been defined. We analyzed a tetrameric PPO isoenzyme (PPO-6) from dandelion (Taraxacum officinale) heterologously expressed in Escherichia coli, and found it to display cooperativity in catalysis, a phenomenon that has rarely been shown for plant PPOs previously. The identification of a surface-exposed cysteine (197) through molecular modeling followed by site-directed mutagenesis proved this amino acid residue to stabilize the tetramer via a disulfide linkage. The C197S-mutein still forms a tetrameric structure but shows impaired enzymatic efficiency and cooperativity and a reduction in stability. These findings indicate that oligomerization may be a physiological requirement for PPO-6 stability and function in vivo and raise new questions regarding distinct functions for specific PPO isoenzymes in plants.  相似文献   
283.
The heat shock protein 90 plays a pivotal role in the life cycle control of Leishmania donovani promoting the fast‐growing insect stage of this parasite. Equally important for insect stage growth is the co‐chaperone Sti1. We show that replacement of Sti1 is only feasible in the presence of additional Sti1 transgenes indicating an essential role. To better understand the impact of Sti1 and its interaction with Hsp90, we performed a mutational analysis of Hsp90. We established that a single amino acid exchange in the Leishmania Hsp90 renders that protein resistant to the inhibitor radicicol (RAD), yet does not interfere with its functionality. Based on this RAD‐resistant Hsp90, we established a combined chemical knockout/gene complementation (CKC) approach. We can show that Hsp90 function is required in both insect and mammalian life stages and that the Sti1‐binding motif of Hsp90 is crucial for proliferation of insect and mammalian stages of the parasite. The Sti1‐binding motif in Leishmania Hsp90 is suboptimal – optimizing the motif increased initial intracellular proliferation underscoring the importance of the Hsp90–Sti1 interaction for this important parasitic protozoan. The CKC strategy we developed will allow the future analysis of more Hsp90 domains and motifs in parasite viability and infectivity.  相似文献   
284.
CitS from Klebsiella pneumoniae acts as a secondary symporter of citrate and sodium ions across the inner membrane of the host. The protein is the best characterized member of the 2-hydroxycarboxylate transporter family, while no experimental structural information at sub-nanometer resolution is available on this class of membrane proteins. Here, we applied electron crystallography to two-dimensional crystals of CitS. Carbon-film-adsorbed tubular two-dimensional crystals were studied by cryo-electron microscopy, producing the 6-?-resolution projection structure of the membrane-embedded protein. In the p22(1)2(1)-symmetrized projection map, the predicted dimeric structure is clearly visible. Each monomeric unit can tentatively be interpreted as being composed of 11 transmembrane α-helices. In projection, CitS shows a high degree of structural similarity to NhaP1, the Na(+)/H(+) antiporter of Methanococcus jannaschii. We discuss possible locations for the dimer interface and models for the helical arrangements and domain organizations of the symporter based on existing models.  相似文献   
285.
286.
287.
Spontaneous abortion is a frequent threat affecting 10%-25% of human pregnancies. Psychosocial stress has been suggested to be attributable for pregnancy losses by challenging the equilibrium of systems mandatory for pregnancy maintenance, including the nervous, endocrine, and immune system. Strong evidence indicates that stress-triggered abortion is mediated by adhesion molecules, i.e., intercellular adhesion molecule 1 (ICAM1) and leukocyte function associated molecule 1, now being referred to as integrin alpha L (ITGAL), which facilitate recruitment of inflammatory cells to the feto-maternal interface. The neurotrophin beta-nerve growth factor (NGFB), which has been shown to be upregulated in response to stress in multiple experimental settings including in the uterine lining (decidua) during pregnancy, increases ICAM1 expression on endothelial cells. Here, we investigated whether and how NGFB neutralization has a preventive effect on stress-triggered abortion in the murine CBA/J x DBA/2J model. We provide experimental evidence that stress exposure upregulates the frequency of abortion and the expression of uterine NGFB. Further, adhesion molecules ICAM1 and selectin platelet (SELP, formerly P-Selectin) and their ligands ITGAL and SELP ligand (SELPL, formerly P selectin glycoprotein ligand 1) respectively increase in murine deciduas in response to stress. Subsequently, decidual cytokines are biased toward a proinflammatory and abortogenic cytokine profile. Additionally, a decrease of pregnancy protective CD8alpha(+) decidual cells is present. Strikingly, all such uterine stress responses are abrogated by NGFB neutralization. Hence, NGFB acts as a proximal mediator in the hierarchical network of immune rejection by mediating an abortogenic environment comprised of classical signs of neurogenic inflammation.  相似文献   
288.
The organization of the genome is nonrandom and important for correct function. Specifically, the nuclear envelope plays a critical role in gene regulation. It generally constitutes a repressive environment, but several genes, including the GAL locus in budding yeast, are recruited to the nuclear periphery on activation. Here, we combine imaging and computational modeling to ask how the association of a single gene locus with the nuclear envelope influences the surrounding chromosome architecture. Systematic analysis of an entire yeast chromosome establishes that peripheral recruitment of the GAL locus is part of a large-scale rearrangement that shifts many chromosomal regions closer to the nuclear envelope. This process is likely caused by the presence of several independent anchoring points. To identify novel factors required for peripheral anchoring, we performed a genome-wide screen and demonstrated that the histone acetyltransferase SAGA and the activity of histone deacetylases are needed for this extensive gene recruitment to the nuclear periphery.  相似文献   
289.
290.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号