排序方式: 共有321条查询结果,搜索用时 15 毫秒
31.
Kurz M Iturbe-Ormaetxe I Jarrott R Cowieson N Robin G Jones A King GJ Frei P Glockshuber R O'Neill SL Heras B Martin JL 《Protein expression and purification》2008,59(2):266-273
Wolbachia pipientis are obligate endosymbionts that infect a wide range of insect and other arthropod species. They act as reproductive parasites by manipulating the host reproduction machinery to enhance their own transmission. This unusual phenotype is thought to be a consequence of the actions of secreted Wolbachia proteins that are likely to contain disulfide bonds to stabilize the protein structure. In bacteria, the introduction or isomerization of disulfide bonds in proteins is catalyzed by Dsb proteins. The Wolbachia genome encodes two proteins, α-DsbA1 and α-DsbA2, that might catalyze these steps. In this work we focussed on the 234 residue protein α-DsbA1; the gene was cloned and expressed in Escherichia coli, the protein was purified and its identity confirmed by mass spectrometry. The sequence identity of α-DsbA1 for both dithiol oxidants (E. coli DsbA, 12%) and disulfide isomerases (E. coli DsbC, 14%) is similar. We therefore sought to establish whether α-DsbA1 is an oxidant or an isomerase based on functional activity. The purified α-DsbA1 was active in an oxidoreductase assay but had little isomerase activity, indicating that α-DsbA1 is DsbA-like rather than DsbC-like. This work represents the first successful example of the characterization of a recombinant Wolbachia protein. Purified α-DsbA1 will now be used in further functional studies to identify protein substrates that could help explain the molecular basis for the unusual Wolbachia phenotypes, and in structural studies to explore its relationship to other disulfide oxidoreductase proteins. 相似文献
32.
Bogdan S Grewe O Strunk M Mertens A Klämbt C 《Development (Cambridge, England)》2004,131(16):3981-3989
Regulation of growth cone and cell motility involves the coordinated control of F-actin dynamics. An important regulator of F-actin formation is the Arp2/3 complex, which in turn is activated by Wasp and Wave. A complex comprising Kette/Nap1, Sra-1/Pir121/CYFIP, Abi and HSPC300 modulates the activity of Wave and Wasp. We present the characterization of Drosophila Sra-1 (specifically Rac1-associated protein 1). sra-1 and kette are spatially and temporally co-expressed, and both encoded proteins interact in vivo. During late embryonic and larval development, the Sra-1 protein is found in the neuropile. Outgrowing photoreceptor neurons express high levels of Sra-1 also in growth cones. Expression of double stranded sra-1 RNA in photoreceptor neurons leads to a stalling of axonal growth. Following knockdown of sra-1 function in motoneurons, we noted abnormal neuromuscular junctions similar to what we determined for hypomorphic kette mutations. Similar mutant phenotypes were induced after expression of membrane-bound Sra-1 that lacks the Kette-binding domain, suggesting that sra-1 function is mediated through kette. Furthermore, we could show that both proteins stabilize each other and directly control the regulation of the F-actin cytoskeleton in a Wasp-dependent manner. 相似文献
33.
34.
Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some of the best-validated examples of HMTs contributing to tumorigenesis and discuss their potential mechanisms of action. 相似文献
35.
Ivonne Gamper David Fleck Meltem Barlin Marc Spehr Sara El Sayad Henning Kleine Sebastian Maxeiner Carmen Schalla Gülcan Aydin Mareike Hoss David W. Litchfield Bernhard Lüscher Martin Zenke Antonio Sechi 《Molecular biology of the cell》2016,27(2):277-294
Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β−/− Sertoli cells moved faster than wild-type cells. In addition, GAR22β−/− cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β−/− cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes. 相似文献
36.
NAADP mobilizes calcium from the endoplasmic reticular Ca(2+) store in T-lymphocytes 总被引:2,自引:0,他引:2
The target calcium store of nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent endogenous calcium-mobilizing compound known to date, has been proposed to reside in the lysosomal compartment or in the endo/sarcoplasmic reticulum. This study was performed to test the hypothesis of a lysosomal versus an endoplasmic reticular calcium store sensitive to NAADP in T-lymphocytes. Pretreatment of intact Jurkat T cells with glycyl-phenylalanine 2-naphthylamide largely reduced staining of lysosomes by LysoTracker Red and abolished NAADP-induced Ca(2+) signaling. However, the inhibitory effect was not specific since Ca(2+) mobilization by d-myo-inositol 1,4,5-trisphosphate and cyclic ADP-ribose was abolished, too. Bafilomycin A1, an inhibitor of the lysosomal H(+)-ATPase, did not block or reduce NAADP-induced Ca(2+) signaling, although it effectively prevented labeling of lysosomes by LysoTracker Red. Further, previous T cell receptor/CD3 stimulation in the presence of bafilomycin A1, assumed to block refilling of lysosomal Ca(2+) stores, did not antagonize subsequent NAADP-induced Ca(2+) signaling. In contrast to bafilomycin A1, emptying of the endoplasmic reticulum by thapsigargin almost completely prevented Ca(2+) signaling induced by NAADP. In conclusion, in T-lymphocytes, no evidence for involvement of lysosomes in NAADP-mediated Ca(2+) signaling was obtained. The sensitivity of NAADP-induced Ca(2+) signaling toward thapsigargin, combined with our recent results identifying ryanodine receptors as the target calcium channel of NAADP (Dammermann, W., and Guse, A. H. (2005) J. Biol. Chem. 280, 21394-21399), rather suggest that the target calcium store of NAADP in T cells is the endoplasmic reticulum. 相似文献
37.
Palatability of parasitic plants may be influenced by their host species, because the parasites take up nutrients and secondary compounds from the hosts. If parasitic plants acquired the full spectrum of secondary compounds from their host, one would expect a correlation between host and parasite palatability. We examined the palatability of leaves of the root-hemiparasite Melampyrum arvense grown with different host plants and the palatability of these host plants for two generalist herbivores, the caterpillar of Spodoptera littoralis and the slug Arion lusitanicus. We used 19 species of host plants from 11 families that are known to contain a wide spectrum of anti-herbivore compounds. Growth of M. arvense was strongly influenced by the host species. The palatability of the individual host species for the two herbivores differed strongly. Both A. lusitanicus and S. littoralis discriminated also between hemiparasites grown with different host plants. There was no correlation between the palatability of a host species and that of the parasites grown on that host, i.e., hemiparasites grown on palatable host species were not more palatable than those grown on unpalatable hosts. We suggest an interacting pattern of specific effects of chemical anti-herbivore defences and indirect effects of the hosts on herbivores through effects on growth and tissue quality of the parasites. 相似文献
38.
Andrea Kirmaier Fan Wu Ruchi M. Newman Laura R. Hall Jennifer S. Morgan Shelby O'Connor Preston A. Marx Mareike Meythaler Simoy Goldstein Alicia Buckler-White Amitinder Kaur Vanessa M. Hirsch Welkin E. Johnson 《PLoS biology》2010,8(8)
Simian immunodeficiency viruses of sooty mangabeys (SIVsm) are the source of multiple, successful cross-species transmissions, having given rise to HIV-2 in humans, SIVmac in rhesus macaques, and SIVstm in stump-tailed macaques. Cellular assays and phylogenetic comparisons indirectly support a role for TRIM5α, the product of the TRIM5 gene, in suppressing interspecies transmission and emergence of retroviruses in nature. Here, we investigate the in vivo role of TRIM5 directly, focusing on transmission of primate immunodeficiency viruses between outbred primate hosts. Specifically, we retrospectively analyzed experimental cross-species transmission of SIVsm in two cohorts of rhesus macaques and found a significant effect of TRIM5 genotype on viral replication levels. The effect was especially pronounced in a cohort of animals infected with SIVsmE543-3, where TRIM5 genotype correlated with approximately 100-fold to 1,000-fold differences in viral replication levels. Surprisingly, transmission occurred even in individuals bearing restrictive TRIM5 genotypes, resulting in attenuation of replication rather than an outright block to infection. In cell-culture assays, the same TRIM5 alleles associated with viral suppression in vivo blocked infectivity of two SIVsm strains, but not the macaque-adapted strain SIVmac239. Adaptations appeared in the viral capsid in animals with restrictive TRIM5 genotypes, and similar adaptations coincide with emergence of SIVmac in captive macaques in the 1970s. Thus, host TRIM5 can suppress viral replication in vivo, exerting selective pressure during the initial stages of cross-species transmission. 相似文献
39.
Daniel Maynard Sara Mareike Müller Monika Hahmeier Jana Löwe Ivo Feussner Harald Gröger Andrea Viehhauser Karl-Josef Dietz 《Bioorganic & medicinal chemistry》2018,26(7):1356-1364
Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ2 and PGA2, cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta. 相似文献
40.
Arash Mehdiani Anatol Maier Antonio Pinto Mareike Barth Payam Akhyari Artur Lichtenberg 《Journal of visualized experiments : JoVE》2015,(95)
Although the biological importance of exosomes has recently gained an increasing amount of scientific and clinical attention, much is still unknown about their complex pathways, their bioavailability and their diverse functions in health and disease. Current work focuses on the presence and the behavior of exosomes (in vitro as well as in vivo) in the context of different human disorders, especially in the fields of oncology, gynecology and cardiology.Unfortunately, neither a consensus regarding a gold standard for exosome isolation exists, nor is there an agreement on such a method for their quantitative analysis. As there are many methods for the purification of exosomes and also many possibilities for their quantitative and qualitative analysis, it is difficult to determine a combination of methods for the ideal approach. Here, we demonstrate nanoparticle tracking analysis (NTA), a semi-automated method for the characterization of exosomes after isolation from human plasma by ultracentrifugation. The presented results show that this approach for isolation, as well as the determination of the average number and size of exosomes, delivers reproducible and valid data, as confirmed by other methods, such as scanning electron microscopy (SEM). 相似文献