首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4551篇
  免费   457篇
  国内免费   2篇
  2022年   48篇
  2021年   118篇
  2020年   63篇
  2019年   76篇
  2018年   91篇
  2017年   91篇
  2016年   166篇
  2015年   214篇
  2014年   267篇
  2013年   294篇
  2012年   380篇
  2011年   362篇
  2010年   231篇
  2009年   185篇
  2008年   280篇
  2007年   267篇
  2006年   240篇
  2005年   220篇
  2004年   182篇
  2003年   168篇
  2002年   161篇
  2001年   50篇
  2000年   31篇
  1999年   36篇
  1998年   34篇
  1997年   23篇
  1996年   27篇
  1994年   18篇
  1993年   29篇
  1992年   32篇
  1991年   29篇
  1990年   24篇
  1989年   25篇
  1988年   27篇
  1987年   24篇
  1986年   22篇
  1985年   32篇
  1984年   29篇
  1983年   20篇
  1982年   25篇
  1981年   20篇
  1980年   18篇
  1979年   21篇
  1978年   21篇
  1976年   19篇
  1975年   16篇
  1974年   27篇
  1973年   19篇
  1972年   18篇
  1968年   16篇
排序方式: 共有5010条查询结果,搜索用时 15 毫秒
941.
942.

Background  

Several tools have been developed to explore and search Gene Ontology (GO) databases allowing efficient GO enrichment analysis and GO tree visualization. Nevertheless, identification of highly specific GO-terms in complex data sets is relatively complicated and the display of GO term assignments and GO enrichment analysis by simple tables or pie charts is not optimal. Valuable information such as the hierarchical position of a single GO term within the GO tree (topological ordering), or enrichment within a complex set of biological experiments is not displayed. Pie charts based on GO tree levels are, themselves, one-dimensional graphs, which cannot properly or efficiently represent the hierarchical specificity for the biological system being studied.  相似文献   
943.
944.
Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra), which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH), which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen–deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.  相似文献   
945.
946.
We have demonstrated that amide-based dendrimers functionalized with the membrane-interacting peptide gH625 derived from the herpes simplex virus type 1 (HSV-1) envelope glycoprotein H enter cells mainly through a non-active translocation mechanism. Herein, we investigate the interaction between the peptide-functionalized dendrimer and liposomes composed of PC/Chol using fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance to get insights into the mechanism of internalization. The affinity for the membrane bilayer is very high and the interaction between the peptide-dendrimer and liposomes took place without evidence of pore formation. These results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.  相似文献   
947.
948.
An optimal control model for maximum-height human jumping   总被引:11,自引:0,他引:11  
To understand how intermuscular control, inertial interactions among body segments, and musculotendon dynamics coordinate human movement, we have chosen to study maximum-height jumping. Because this activity presents a relatively unambiguous performance criterion, it fits well into the framework of optimal control theory. The human body is modeled as a four-segment, planar, articulated linkage, with adjacent links joined together by frictionless revolutes. Driving the skeletal system are eight musculotendon actuators, each muscle modeled as a three-element, lumped-parameter entity, in series with tendon. Tendon is assumed to be elastic, and its properties are defined by a stress-strain curve. The mechanical behavior of muscle is described by a Hill-type contractile element, including both series and parallel elasticity. Driving the musculotendon model is a first-order representation of excitation-contraction (activation) dynamics. The optimal control problem is to maximize the height reached by the center of mass of the body subject to body-segmental, musculotendon, and activation dynamics, a zero vertical ground reaction force at lift-off, and constraints which limit the magnitude of the incoming neural control signals to lie between zero (no excitation) and one (full excitation). A computational solution to this problem was found on the basis of a Mayne-Polak dynamic optimization algorithm. Qualitative comparisons between the predictions of the model and previously reported experimental findings indicate that the model reproduces the major features of a maximum-height squat jump (i.e. limb-segmental angular displacements, vertical and horizontal ground reaction forces, sequence of muscular activity, overall jump height, and final lift-off time).  相似文献   
949.
DNase I sensitivity in facultative and constitutive heterochromatin   总被引:2,自引:0,他引:2  
In situ nick translation allows the detection of DNase I sensitive and insensitive regions in fixed mammalian mitotic chromosomes. We have determined the difference in DNase I sensitivity between the active and inactive X chromosomes inMicrotus agrestis (rodent) cells, along both their euchromatic and constitutive heterochromatic regions. In addition, we analysed the DNase I sensitivity of the constitutive heterochromatic regions in mouse chromosomes. InMicrotus agrestis female cells the active X chromosome is sensitive to DNase I along its euchromatic region while the inactive X chromosome is insensitive except for an early replicating region at its distal end. The late replicating constitutive heterochromatic regions, however, in both the active and inactive X chromosome are sensitive to DNase I. In mouse cells on the other hand, the constitutive heterochromatin is insensitive to DNase I both in mitotic chromosomes and interphase nuclei.  相似文献   
950.
Jablonka  Eva  Goitein  Ruth  Marcus  Menashe  Cedar  Howard 《Chromosoma》1985,93(2):152-156
Summary We have examined the effect of 5-azacytidine (5-aza-C) induced hypomethylation of DNA on the time of replication and DNase I sensitivity of the X chromosomes of female Gerbillus gerbillus (rodent) lung fibroblast cells. Using in situ nick translation to visualise the potential state of activity of large regions of metaphase chromosomes we show that 5-aza-C causes a dramatic increase in the DNase-I sensitivity of the entire inactive X chromosome of female G. gerbillus cells and this increase in nuclease sensitivity correlates with a large shift in the time of replication of the inactive X chromosome from late S phase to early S phase. These effects of 5-aza-C on the inactive X chromosome are associated with a 15% decrease in DNA methylation. Our results indicate that DNA methylation concomitantly affects both the time of replication and the chromatin conformation of the inactive X chromosome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号