首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4521篇
  免费   468篇
  国内免费   2篇
  4991篇
  2023年   17篇
  2022年   62篇
  2021年   121篇
  2020年   63篇
  2019年   77篇
  2018年   90篇
  2017年   91篇
  2016年   165篇
  2015年   216篇
  2014年   270篇
  2013年   295篇
  2012年   379篇
  2011年   357篇
  2010年   235篇
  2009年   186篇
  2008年   282篇
  2007年   270篇
  2006年   238篇
  2005年   221篇
  2004年   187篇
  2003年   165篇
  2002年   161篇
  2001年   46篇
  2000年   34篇
  1999年   37篇
  1998年   33篇
  1997年   22篇
  1996年   24篇
  1994年   20篇
  1993年   27篇
  1992年   26篇
  1991年   28篇
  1990年   19篇
  1989年   24篇
  1988年   23篇
  1987年   23篇
  1986年   22篇
  1985年   29篇
  1984年   26篇
  1983年   20篇
  1982年   24篇
  1981年   20篇
  1980年   18篇
  1979年   21篇
  1978年   20篇
  1977年   16篇
  1976年   20篇
  1974年   26篇
  1973年   19篇
  1972年   16篇
排序方式: 共有4991条查询结果,搜索用时 15 毫秒
21.
Quantitative protein profiling is an essential part of proteomics and requires new technologies that accurately, reproducibly, and comprehensively identify and quantify the proteins contained in biological samples. We describe a new strategy for quantitative protein profiling that is based on the separation of proteins labeled with isotope-coded affinity tag reagents by two-dimensional gel electrophoresis and their identification and quantification by mass spectrometry. The method is based on the observation that proteins labeled with isotopically different isotope-coded affinity tag reagents precisely co-migrate during two-dimensional gel electrophoresis and that therefore two or more isotopically encoded samples can be separated concurrently in the same gel. By analyzing changes in the proteome of yeast (Saccharomyces cerevisiae) induced by a metabolic shift we show that this simple method accurately quantifies changes in protein abundance even in cases in which multiple proteins migrate to the same gel coordinates. The method is particularly useful for the quantitative analysis and structural characterization of differentially processed or post-translationally modified forms of a protein and is therefore expected to find wide application in proteomics research.  相似文献   
22.
23.
The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual''s HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections.  相似文献   
24.
The intraruminal papillation pattern indicates the degree of rumen contents stratification and is related to the feeding niche of a ruminant. Muskoxen (Ovibos moschatus) display a variety of morphophysiological adaptations typical for grazers. We investigated the intraruminal papillation of 22 free-ranging muskoxen from five different months by comparing the surface enlargement factor both between seasons and between individual rumen regions. The seasonal pattern of rumen papillation indicated a distinct seasonality in food quality. The intraruminal papillation indicated a moderate degree of rumen contents stratification typical for intermediate feeders. The nutritional ecology of muskoxen is characterised by specific morphophysiological adaptations to a grass-dominated diet that nevertheless allow extensive seasonal use of browse forage.  相似文献   
25.
26.
27.
Cell lines derived from the small intestine that reflect authentic properties of the originating intestinal epithelium are of high value for studies on mucosal immunology and host microbial homeostasis. A novel immortalization procedure was applied to generate continuously proliferating cell lines from murine E19 embryonic small intestinal tissue. The obtained cell lines form a tight and polarized epithelial cell layer, display characteristic tight junction, microvilli and surface protein expression and generate increasing transepithelial electrical resistance during in vitro culture. Significant up-regulation of Cxcl2 and Cxcl5 chemokine expression upon exposure to defined microbial innate immune stimuli and endogenous cytokines is observed. Cell lines were also generated from a transgenic interferon reporter (Mx2-Luciferase) mouse, allowing reporter technology-based quantification of the cellular response to type I and III interferon. Thus, the newly created cell lines mimic properties of the natural epithelium and can be used for diverse studies including testing of the absorption of drug candidates. The reproducibility of the method to create such cell lines from wild type and transgenic mice provides a new tool to study molecular and cellular processes of the epithelial barrier.  相似文献   
28.
Attempts to transform wild type strains of V. cholerae with plasmid DNA by traditional osmotic shock methods were not successful. A mutant of V. cholerae that was deficient in extracellular DNase was transformed with plasmid DNA by osmotic shock, demonstrating directly that extracellular DNase is a major barrier to transformation of V. cholerae. Transformation of wild type and DNase-negative strains of V. cholerae was accomplished by electroporation. Efficiency of transformation by electroporation increased with field strength, decreased with plasmid size, and was relatively insensitive to changes in the electrolyte composition of the buffer as long as isotonic sucrose was present. Host-controlled modification/restriction systems also affected transformation efficiency in V. cholerae.  相似文献   
29.
Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phylogeny; here we examine the dentition of Polyodon spathula (American paddlefish), assigned to the basal group Acipenseriformes. Although teeth are present and functional in young individuals of Polyodon, they are completely absent in adults. Our current understanding of developmental genes operating in the dentition is primarily restricted to teleosts; we show that shh and bmp4, as highly conserved epithelial and mesenchymal genes for gnathostome tooth development, are similarly expressed at Polyodon tooth loci, thus extending this conserved developmental pattern within the Actinopterygii. These genes map spatio-temporal tooth initiation in Polyodon larvae and provide new data in both oral and pharyngeal tooth sites. Variation in cellular intensity of shh maps timing of tooth morphogenesis, revealing a second odontogenic wave as alternate sites within tooth rows, a dental pattern also present in more derived actinopterygians. Developmental timing for each tooth field in Polyodon follows a gradient, from rostral to caudal and ventral to dorsal, repeated during subsequent loss of teeth. The transitory Polyodon dentition is modified by cessation of tooth addition and loss. As such, Polyodon represents a basal actinopterygian model for the evolution of developmental novelty: initial conservation, followed by tooth loss, accommodating the adult trophic modification to filter-feeding.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号