首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3913篇
  免费   239篇
  国内免费   1篇
  2024年   3篇
  2023年   28篇
  2022年   50篇
  2021年   115篇
  2020年   75篇
  2019年   110篇
  2018年   136篇
  2017年   124篇
  2016年   169篇
  2015年   249篇
  2014年   231篇
  2013年   288篇
  2012年   329篇
  2011年   291篇
  2010年   194篇
  2009年   197篇
  2008年   244篇
  2007年   222篇
  2006年   184篇
  2005年   177篇
  2004年   153篇
  2003年   129篇
  2002年   108篇
  2001年   54篇
  2000年   33篇
  1999年   40篇
  1998年   26篇
  1997年   14篇
  1996年   19篇
  1995年   11篇
  1994年   15篇
  1993年   9篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   14篇
  1988年   8篇
  1987年   6篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1979年   7篇
  1978年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
排序方式: 共有4153条查询结果,搜索用时 15 毫秒
41.
42.
43.
Abstract Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium . The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).  相似文献   
44.
Analysis of the oxygen isotope ratio of tree-ring cellulose is a valuable tool that can be used as a paleoclimate proxy. Our ability to use this tool has gone through different phases. The first began in the 1970s with the demonstration of empirical relationships between the oxygen isotope ratio of tree-ring cellulose and climate. These empirical relationships, however, did not provide us with the confidence that they are robust through time, across taxa and across geographical locations. The second phase began with a rudimentary understanding of the physiological and biochemical mechanisms responsible for the oxygen isotope ratios of cellulose, which is necessary to increase the power of this tool. This phase culminated in a mechanistic tree-ring model integrating concepts of physiology and biochemistry in a whole-plant system. This model made several assumptions about leaf water isotopic enrichment and biochemistry which, in the nascent third phase, are now being challenged, with surprising results. These third-phase results suggest that, contrary to the model assumption, leaf temperature across a large latitudinal gradient is remarkably constant and does not follow ambient temperature. Recent findings also indicate that the biochemistry responsible for the incorporation of the cellulose oxygen isotopic signature is not as simple as has been assumed. Interestingly, the results of these challenges have strengthened the tree-ring model. There are several other assumptions that can be investigated which will improve the utility of the tree-ring model.  相似文献   
45.
Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real‐world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first‐generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter‐disciplinary communication.  相似文献   
46.
DNA repair mechanisms are important to maintain the stability of the genome. In Drosophila melanogaster, the mus-201 gene is required in the excision repair process. To study the contribution of the mus-201 gene in the stability of the Drosophila genome, we have used the arbitrarily primed PCR fingerprinting method (AP-PCR). We have analysed the changes in the genomic DNA fingerprints from the progeny of wild-type males crossed with mus-201 repair-deficient or repair-proficient females. After induction of DNA damage with 2-acetylaminofluorene (2-AAF) in the wild-type parental males, quantitative and qualitative differences in the AP-PCR fingerprints were detected between the two crosses, and the estimate of the genomic damage detected by AP-PCR has clearly shown that the mus-201 repair deficiency is associated with an increase of genomic damage. The predominant type of alterations detected by AP-PCR under the mus-201 repair-deficient conditions agree with the results obtained in microsatellite PCR analysis, suggesting that the role of the mus-201 gene, necessary in excision repair, is not associated to the mismatch repair process. The work reported here demonstrates that the AP-PCR is a suitable technique to analyse genetic alterations in D. melanogaster and, consequently, can be used to compare the susceptibility to genomic damage of different DNA repair mutants.  相似文献   
47.
Comparative genometrics of microorganisms is a relatively new area, in which genome properties are translated into numerical indexes. Such indexes can be used for a comprehensive and comparative analysis of microbial genomes, contributing to the understanding of their evolution. This work presents a new method for quantitative determination of gene strand bias in prokaryotic chromosomes, in which data transformation of gene position skew leads to a numerical index that can be applied to quantitative comparisons of genome organization. It was applied in the comparative analysis of 49 completely sequenced Firmicutes genomes, allowing the distinction of groups defined according to their patterns of gene strand preference. The resulting groups revealed that, regarding gene strand bias, reduced genomes are, in general, the more disordered among Firmicutes, while genomes of extremophile organisms comprehend those with the highest degree of genome organization in this phylum.  相似文献   
48.
The oviduct is an important reproductive structure that connects the ovary to the uterus and takes place to important events such as oocyte final maturation, fertilization and early embryonic development. Thus, gametes and embryo can be directly influenced by the oviductal microenvironment composed by epithelial cells such secretory and ciliated cells and oviductal fluid. The oviduct composition is anatomically dynamic and is under ovarian hormones control. The oviductal fluid provides protection, nourishment and transport to gametes and embryo and allows interaction to oviductal epithelial cells. All these functions together allows the oviduct to provides the ideal environment to the early reproductive events. Extracellular vesicles (EVs) are biological nanoparticles that mediates cell communication and are present at oviductal fluid and plays an important role in gametes/embryo - oviductal cells communication. This review will present the ability of the oviducts based on its dynamic and systemic changes during reproductive events, as well as the contribution of EVs in this process.  相似文献   
49.
Structural and ecophysiological adaptations to forest gaps   总被引:2,自引:0,他引:2  
To survive new microclimatic conditions of a forest gap environment, plant species must physiologically and structurally adjust. A morpho-anatomical, ultrastructural and ecophysiological study was performed at three different times in a forest gap that was created by illegal selective logging. The study followed the early successional Actinostemon verticillatus and the late-successional Metrodorea brevifolia, to elucidate the adaptive strategies of acclimation to gaps. Additionally, Schinus terebinthifolius was included in the study in order to test the plasticity of a pioneer species that grows on forest edges, where this species had higher values of leaf thickness, leaf mass area and succulence. M. brevifolia had succulent leaves, high leaf area and a thin cuticle. A. verticillatus presented the densest leaves and was the only species to show leaf morpho-anatomical plasticity. Ultrastructural and physiological differences were observed only in A. verticillatus and M. brevifolia leaves from the gap: increase in the stroma volume, oil droplets, plastoglobuli, photochemical and non-photochemical quenching. Photosynthetic efficiency showed that the early stages of gap formation are the most critical. Acclimation strategies of A. verticillatus suggest this species invests in the efficiency of photosynthesis by increasing its leaf thickness, leaf mass area and in water content maintenance by increasing the density of its leaves, at the expense of gas exchange, was compensated by a high density of stomata. M. brevifolia compensates for the higher cost of leaves and lower leaf plasticity with ultrastructural changes that are used to adjust the photosynthetic process, which promotes a shorter leaf payback time.  相似文献   
50.
Summary Human erythrocytes were labeled with stearic acid spin labels, and no change was detected in membrane fluidity under hyperosmotic stress, going from isotonicity to about 3000 mOsm. Intact erythrocytes labeled with an androstane spin label and submitted to simulation of freezing show the onset of irreversible structural breakdown occurring in a saline solution at 2,000 mOsm. Ghosts labeled with maleimide spin label (4-maleimide-2,2,6,6-tetramethylpiperidinooxyl) when submitted to solutions of increasing osmolalities (pH 7.4), exhibit protein conformational changes that are irreversible after a simulated freeze-thaw cycle. After sonication of maleimide spin-labeled ghosts, membrane buried sulfhydryl groups become exposed. Such preparations showed behavior similar to the unsonicated when in saline hyperosmolal medium (pH 7.4). Such results suggest the ionic strength of the medium as the determining factor of the detected conformational changes. Maleimide spin-labeled ghosts in 300 mOsm saline solution (pH 7.4) were treated with ascorbic acid (spin destruction of nitroxides), and the kinetic analysis indicates that 65% of the labeled sites are located at the external interface of the membrane or in hydrophilic channels. Deformation and rearrangements of membrane components in solutions of increasing osmolalities apparently are related to protein conformational changes, on the outside surface of erythrocyte membranes, with a significant amount being structurally dissociated of lipids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号