首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3478篇
  免费   221篇
  国内免费   1篇
  2023年   21篇
  2022年   48篇
  2021年   91篇
  2020年   57篇
  2019年   85篇
  2018年   108篇
  2017年   93篇
  2016年   114篇
  2015年   195篇
  2014年   189篇
  2013年   251篇
  2012年   272篇
  2011年   250篇
  2010年   165篇
  2009年   160篇
  2008年   212篇
  2007年   179篇
  2006年   159篇
  2005年   170篇
  2004年   146篇
  2003年   122篇
  2002年   103篇
  2001年   38篇
  2000年   43篇
  1999年   39篇
  1998年   23篇
  1997年   17篇
  1996年   20篇
  1995年   10篇
  1994年   12篇
  1993年   10篇
  1992年   38篇
  1991年   26篇
  1990年   21篇
  1989年   16篇
  1988年   23篇
  1987年   12篇
  1986年   13篇
  1985年   16篇
  1984年   13篇
  1983年   19篇
  1982年   10篇
  1981年   9篇
  1979年   9篇
  1978年   6篇
  1976年   6篇
  1974年   6篇
  1970年   7篇
  1969年   8篇
  1968年   5篇
排序方式: 共有3700条查询结果,搜索用时 15 毫秒
981.
982.
The activity of the superoxide-sensitive enzyme aconitase was monitored to evaluate the generation of superoxide in neuronal cell lines treated with beta-amyloid (Abeta) peptide 1-42. Treatment of differentiated and undifferentiated rat PC12 and human neuroblastoma SK-N-SH cells with soluble Abeta1-42 (Abeta-derived diffusible ligands) or fibrillar Abeta1-42 caused a 35% reversible inactivation of aconitase, which preceded loss of viability and was correlated with altered cellular function. Aconitase was reactivated upon incubation of cellular extracts with iron and sulfur, suggesting that Abeta causes the release of iron from 4Fe-4S clusters. Abeta neurotoxicity was partially blocked by the iron chelator deferoxamine. These data suggest that increased superoxide generation and the release of iron from 4Fe-4S clusters are early events in Abeta1-42 neurotoxicity.  相似文献   
983.
In this work, synchrotron radiation total reflection X-ray fluorescence spectrometry (SRTXRF) was used to determine trace elements in eight hypoglycemiant plants (Trigonella foenum graecum, Panax ginseng, Pfaffia paniculata, Myrcia speciosa, Zea mays, Harpagophytum procumbens, Syzygium jambolona, and Bauhinia forficate). The elements P, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, and Sr were detected in all medicinal plants investigated, whereas Si, S, Sc, V, Cr, Co, Ni, Se, Nb, Mo, Sn, Sb, Ba, Hg, and Pb were detected only in some of the samples. The concentration of elements in hypoglycemiant plants varied from 0.15 μg/g of Co to 3.0×104 μg/g of K and the mean of experimental limit of detection for these elements were 0.14 and 3.6 μg/g, respectively.  相似文献   
984.
BACKGROUND AND AIMS: The cotyledons of Lupinus angustifolius contain large amounts of cell wall storage polysaccharide (CWSP) composed mainly of (1-->4)-beta-linked D-galactose residues in the form of branches attached to a rhamnogalacturonan core molecule. An exo-(1-->4)-beta-galactanase with a very high specificity towards (1-->4)-beta-linked D-galactan has been isolated from L. angustifolius cotyledons, and shown to vary (activity and specific protein) in step with CWSP mobilization. This work aimed to confirm the hypothesis that galactan is the main polymer retrieved from the wall during mobilization at the ultrastructural level, using the purified exo-galactanase as a probe. METHODS: Storage mesophyll cell walls ('ghosts') were isolated from the cotyledons of imbibed but ungerminated lupin seeds, and also from cotyledons of seedlings after the mobilization of the CWSP. The pure exo-(1-->4)-beta-galactanase was coupled to colloidal gold particles and shown to be a specific probe for (1-->4)-beta-D-galactan. They were used to localize galactan in ultrathin sections of L. angustifolius cotyledonary mesophyll tissue during CWSP mobilization. KEY RESULTS: On comparing the morphologies of isolated cell walls, the post-mobilization 'ghosts' did not have the massive wall-thickenings of pre-mobilization walls. Compositional analysis showed that the post-mobilization walls were depleted in galactose and, to a lesser extent, in arabinose. When pre-mobilization ghosts were treated with the pure exo-galactanase, they became morphologically similar to the post-mobilization ghosts. They were depleted of approximately 70% of the galactose residues that would have been mobilized in vivo, and retained all the other sugar residues originally present. Sharply defined electron-transparent wall zones or pockets are associated with CWSP mobilization, being totally free of galactan, whereas wall areas immediately adjacent to them were apparently undepleted. CONCLUSIONS: The exo-(1-->4)-beta-galactanase is the principal enzyme involved in CWSP mobilization in lupin cotyledons in vivo. The storage walls dramatically change their texture during mobilization as most of the galactan is hydrolysed during seedling development.  相似文献   
985.
We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 (n = 6) or Dextran 70 (n = 5) with final plasma viscosities of 1.99 +/- 0.11 and 1.33 +/- 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control (n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.  相似文献   
986.
Hematocrit (Hct) of awake hamsters and CD-1 mice was acutely increased by isovolemic exchange transfusion of packed red blood cells (RBCs) to assess the relation between Hct and blood pressure. Increasing Hct 7-13% of baseline decreased mean arterial blood pressure (MAP) by 13 mmHg. Increasing Hct above 19% reversed this trend and caused MAP to rise above baseline. This relationship is described by a parabolic function (R2 = 0.57 and P < 0.05). Hamsters pretreated with the nitric oxide (NO) synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) and endothelial NOS-deficient mice showed no change in MAP when Hct was increased by <19%. Nitrate/nitrite plasma levels of Hct-augmented hamsters increased relative to control and L-NAME treated animals. The blood pressure effect was stable 2 h after exchange transfusion. These findings suggest that increasing Hct increases blood viscosity, shear stress, and NO production, leading to vasodilation and mild hypotension. This was corroborated by measuring A1 arteriolar diameters (55.0 +/- 21.5 microm) and blood flow in the hamster window chamber preparation, which showed statistically significant increased vessel diameter (1.04 +/- 0.1 relative to baseline) and microcirculatory blood flow (1.39 +/- 0.68 relative to baseline) after exchange transfusion with packed RBCs. Larger increases of Hct (>19% of baseline) led blood viscosity to increase >50%, overwhelming the NO effect through a significant viscosity-dependent increase in vascular resistance, causing MAP to rise above baseline values.  相似文献   
987.
The oxygen transport capacity of phospholipid vesicles encapsulating purified Hb (HbV) produced with a Po(2) at which Hb is 50% saturated (P 50 ) of 8 (HbV(8)) and 29 mmHg (HbV(29)) was investigated in the hamster chamber window model by using microvascular measurements to determine oxygen delivery during extreme hemodilution. Two isovolemic hemodilution steps were performed with 5% recombinant albumin (rHSA) until Hct was 35% of baseline. Isovolemic exchange was continued using HbV suspended in rHSA solution to a total [Hb] of 5.7 g/dl in blood. P(50) was modified by coencapsulating pyridoxal 5'-phosphate. Final Hct was 11% for the HbV groups, with a plasma [Hb] of 2.1 +/- 0.1 g/dl after exchange with HbV(8) or HbV(29). A reference group was hemodiluted to Hct 11% with only rHSA. All groups showed stable blood pressure and heart rate. Arterial oxygen tensions were significantly higher than baseline for the HbV groups and the rHSA group and significantly lower for the HbV groups compared with the rHSA group. Blood pressure was significantly higher for the HbV(8) group compared with the HbV(29) group. Arteriolar and venular blood flows were significantly higher than baseline for the HbV groups. Microvascular oxygen delivery and extraction were similar for the HbV groups but lower for the rHSA group (P < 0.05). Venular and tissue Po(2) were statistically higher for the HbV(8) vs. the HbV(29) and rHSA groups (P < 0.05). Improved tissue Po(2) is obtained when red blood cells deliver oxygen in combination with a high- rather than low-affinity oxygen carrier.  相似文献   
988.
Extreme hemodilution was performed in the hamster chamber window model using 6% Dextran 70, lowering systemic hematocrit by 60%. Animals were subsequently divided into three groups and hemodiluted to a hematocrit of 11% using 6% Dextran 70, 6% Dextran 500, and a 4% Dextran 70 + 0.7% alginate solution (n = 6 each group). Final plasma viscosities were 1.4 +/- 0.2, 2.2 +/- 0.1, and 2.7 +/- 0.2 cp, respectively, (P < 0.05, high viscosity vs. low viscosity). Blood viscosities were 2.1 +/- 0.2, 2.9 +/- 0.4, and 3.9 +/- 0.3 cp, respectively. The lowest blood and plasma viscosity group had a significantly lower functional capillary density, 37 +/- 16%, whereas the two high-viscosity solutions were 71 +/- 15% and 76 +/- 12% (P < 0.05, high viscosity vs. low viscosity), respectively. Arteriolar and venular flow in the Dextran 500 and alginate groups was higher than baseline (i.e., normal nontreated animals), whereas the low-viscosity group showed a reduction in flow. These microvascular changes were paralleled by changes in base excess, which was negative for the Dextran 70 group and positive for the other groups. However, tissue Po(2) was uniformly low for all groups (average of 1.4 mmHg). Calculation of tissue oxygen consumption in the window chamber based on the microvascular data, flow, and intravascular Po(2) showed that only the alginate + Dextran 70 solution-exchanged animals returned to baseline oxygen consumption, whereas the other groups were lower than baseline (P < 0.05). These results show that hemodilution performed with high-viscosity plasma expanders yields systemic arterial pressures and functional capillary densities that are significantly higher (P < 0.05) than those obtained with 6% Dextran 70, a fluid whose viscosity is similar to that of plasma. A condition for obtaining these results is that the oncotic pressure of the plasma expander be titrated to near normal, so that autotransfusion of fluid from the tissue into the vascular compartment does not reduce the effects of increasing plasma viscosity and increased shear stress on the microvascular wall.  相似文献   
989.
The purpose of the present study was to obtain information on erythrocyte aggregate formation in vivo. The movements of erythrocytes in postcapillary venules of the rat spinotrapezius muscle at various flow rates were recorded with a high-speed video camera before and after infusion of dextran 500. To distinguish aggregates, the following criteria were used: 1) a fixed distance (4 microm) between the center points of two adjacent cells, 2) lack of visible separation between the adjacent cells, and 3) movement of the adjacent cells in the same direction. Without dextran 500 infusion, 11 and 5% of erythrocytes formed aggregates in low (33.2 +/- 28.3 s) and high pseudoshear (144.2 +/- 58.3 s) conditions, respectively, based on the above criteria. After dextran 500 infusion, 53% of erythrocytes satisfied the criteria in the low pseudoshear condition (26.5 +/- 17.0 s) and 13% of erythrocytes met the criteria in the high pseudoshear condition (240.0 +/- 85.9 s), indicating erythrocyte aggregation is strongly associated with shear rate. Approximately 90% of aggregate formation occurred in a short time period (0.15-0.30 s after entering the venule) in a region 15 to 30 microm from the entrance. The time delay may reflect rheological entrance conditions in the venule.  相似文献   
990.
A phospholipid vesicle encapsulating Hb [Hb vesicle (HbV)] has been developed as a transfusion alternative. One characteristic of HbV is that the O(2) affinity [Po(2) at which Hb is 50% saturated (P(50))] of Hb can be easily regulated by the amount of the coencapsulated allosteric effector pyridoxal 5'-phosphate. In this study, we prepared two HbVs with different P(50)s (8 and 29 mmHg, termed HbV(8) and HbV(29), respectively) and observed their O(2)-releasing behavior from an occluded arteriole in a hamster skinfold window model. Conscious hamsters received HbV(8) or HbV(29) at a dose rate of 7 ml/kg. In the microscopic view, an arteriole (diameter: 53.0 +/- 6.6 mum) was occluded transcutaneously by a glass pipette on a manipulator, and the reduction of the intra-arteriolar Po(2) 100 mum down from the occlusion was measured by the phosphorescence quenching of preinfused Pd-porphyrin. The baseline arteriolar Po(2) (50-52 mmHg) decreased to about 5 mmHg for all the groups. Occlusion after HbV(8) infusion showed a slightly slower rate of Po(2) reduction compared with that after HbV(29) infusion. The arteriolar O(2) content was calculated at each reducing Po(2) in combination with the O(2) equilibrium curves of HbVs, and it was clarified that HbV(8) showed a significantly slower rate of O(2) release compared with HbV(29) and was a primary source of O(2) (maximum fraction, 0.55) overwhelming red blood cells when the Po(2) was reduced (e.g., <10 mmHg) despite a small dosage of HbV. This result supports the possible utilization of Hb-based O(2) carriers with lower P(50) for oxygenation of ischemic tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号