全文获取类型
收费全文 | 234篇 |
免费 | 25篇 |
专业分类
259篇 |
出版年
2024年 | 2篇 |
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 10篇 |
2020年 | 1篇 |
2019年 | 5篇 |
2018年 | 5篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 8篇 |
2014年 | 8篇 |
2013年 | 16篇 |
2012年 | 13篇 |
2011年 | 22篇 |
2010年 | 9篇 |
2009年 | 11篇 |
2008年 | 14篇 |
2007年 | 7篇 |
2006年 | 9篇 |
2005年 | 7篇 |
2004年 | 8篇 |
2003年 | 6篇 |
2002年 | 5篇 |
2001年 | 5篇 |
2000年 | 2篇 |
1999年 | 3篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 7篇 |
1995年 | 3篇 |
1994年 | 6篇 |
1992年 | 9篇 |
1991年 | 8篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1985年 | 2篇 |
1984年 | 5篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1977年 | 5篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 3篇 |
1970年 | 2篇 |
1969年 | 3篇 |
排序方式: 共有259条查询结果,搜索用时 51 毫秒
61.
Raffaella R Gioia D De Andrea M Cappello P Giovarelli M Marconi P Manservigi R Gariglio M Landolfo S 《Experimental cell research》2004,293(2):331-345
Immunohistochemical analysis has demonstrated that the human IFI16 gene, in addition to the hematopoietic tissues, is highly expressed in endothelial cells and squamous stratified epithelia. In this study, we have developed a reliable HSV-derived replication-defective vector (TO-IFI16) to efficiently transduce IFI16 into primary human umbilical vein endothelial cells (HUVEC), which are usually poorly transfectable. HUVEC infection with TO-IFI16 virus suppressed endothelial migration, invasion and formation of capillary-like structures in vitro. In parallel, sustained IFI16 expression inhibited HUVEC cell cycle progression, accompanied by significant induction of p53, p21, and hypophosphorylated pRb. Further support for the involvement of these pathways in IFI16 activity came from the finding that infection with TO-IFI16 virus does not impair the in vitro angiogenic activity and cell cycle progression of HUVEC immortalized by HPV16 E6/E7 oncogenes, which are known to inactivate both p53 and pRb systems. This use of a reliable viral system for gene delivery into primary human endothelial cells assigns a potent angiostatic activity to an IFN-inducible gene, namely IFI16, and thus throws further light on antiangiogenic therapy employing IFNs. 相似文献
62.
Tiberio R Marconi A Fila C Fumelli C Pignatti M Krajewski S Giannetti A Reed JC Pincelli C 《FEBS letters》2002,520(1-3):139-144
In zebrafish, the basic helix-loop-helix (bHLH) gene neuroD specifies distinct neurons in the spinal cord. A preliminary experiment indicated that a related bHLH gene, ndr1a, normally expressed only in the olfactory organ in late embryos, also functions as neuroD to induce ectopic formation of spinal cord neurons in early embryos after introduction of its mRNA into early embryos. To define the functional specificity of these bHLH proteins, several mutant forms with selected point mutations in the basic domain were constructed and tested for inducing sensory neurons in the spinal cord. Our data indicate that the functional specificity of NeuroD to define sensory neurons is mainly due to a single residue (asparagine 11) in its basic domain. 相似文献
63.
Emidio Albertini Andrea Porceddu Gianpiero Marconi Gianni Barcaccia Luca Pallottini Mario Falcinelli 《Génome》2003,46(5):824-832
In spite of the economical relevance of polyploid crops, genetic mapping of these species has been relatively overlooked. This is because of intrinsic difficulties such as the uncertainty of the chromosome behavior at meiosis I and the need for very large segregating populations. An important, yet underestimated issue, in mapping polyploids is the choice of the molecular marker system. An ideal molecular marker system for polyploid mapping should maximize the percentage of single dose markers (SDMs) detected and the possibility of recognizing allelic markers. In the present work, the marker index for genetic mapping (MIgm) of M-AFLP is compared with that of AFLP and SAMPL. M-AFLPs have the highest MIgm values (22 vs. 18.5 of SAMPL and 9.83 of AFLP) mostly because of their high power to detect polymorphism. Owing to their prevalent codominant inheritance, it is proposed that M-AFLP can be used for the preliminary identification of hom(e)ologous groups. 相似文献
64.
65.
Yongning Lu Sudhanshu Bhushan Svetlin Tchatalbachev Marcelo Marconi Martin Bergmann Wolfgang Weidner Trinad Chakraborty Andreas Meinhardt 《PloS one》2013,8(1)
Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system. Uropathogenic Escherichia coli (UPEC) represent a relevant pathogen in urogenital tract infections. To explore how bacteria can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant increase in TUNEL (+) cells. Activation of caspase-8 (extrinsic apoptotic pathway), caspase-3/−6 (intrinsic apoptotic pathway), caspase-1 (pyroptosis pathway) and the presence of 180 bp DNA fragments, all of which serve as indicators of the classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed degenerative features of Sertoli cells (SC) in UPEC infected testis. Furthermore, the passive release of high mobility group protein B1 (HMGB1), as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to impaired spermatogenesis by loss of function in supporting the dependent germ cells. 相似文献
66.
Anna Rosa Sprocati Chiara Alisi Flavia Tasso Paola Marconi Andrea Sciullo Valentina Pinto Salvatore Chiavarini Carla Ubaldi Carlo Cremisini 《Process Biochemistry》2012,47(11):1649-1655
The activation of natural bioremediation potentials is the challenge that research is currently addressing for overcoming bottlenecks still affecting bioremediation applications. Bioaugmentation is one possible way to activate such natural potentials, provided that the biodiversity introduced to increase catabolically relevant capacity is identified also considering the ecological context. The present work deals with bioaugmentation aimed at the remediation of a soil co-contaminated (spiked) with both diesel oil (1%, v/w), and heavy metals (Pb and Zn), using intact soil core microcosms in different experimental conditions. We supposed that both heavy metal resistance and active metabolism towards organic pollutants are essential metabolic traits to trap the energetic flux, which drives the microbial community towards biodegradation under the given experimental conditions. Consequently, the bioaugmentation was performed by introducing a tailor made microbial formula composed of 12 allochthonous strains. They belong to a stable population previously isolated from a chronic polluted site and are both hydrocarbon degraders and heavy metal resistant and, also, compatible with the autochthonous microbial community. The active role of the microbial formula in pushing the entire community towards an effective bioremediation of diesel oil close to 75%, in the presence of bioavailable metals, has been proven through hydrocarbons analysis, metabolic and molecular profiling at community level (Biolog system, DGGE). 相似文献
67.
Katia Fettucciari Lara Macchioni Magdalena Davidescu Paolo Scarpelli Camilla Palumbo Lanfranco Corazzi Andrea Marchegiani Matteo Cerquetella Andrea Spaterna Pierfrancesco Marconi Gabrio Bassotti 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(12):1945-1958
Clostridium difficile infection (CDI) causes nosocomial/antibiotic-associated diarrhea and pseudomembranous colitis, with dramatic incidence/mortality worldwide. C. difficile virulence factors are toxin A and toxin B (TcdB) which cause cytopathic/cytotoxic effects and inflammation. Until now studies were focused on molecular effects of C. difficile toxins (Tcds) on different cells while unexplored aspect is the status/fate of cells that survived their cytotoxicity. Recently we demonstrated that enteric glial cells (EGCs) are susceptible to TcdB cytotoxicity, but several EGCs survived and were irreversibly cell-cycle arrested and metabolically active, suggesting that EGCs could became senescent. This is important because allowed us to evaluate the not explored status/fate of cells surviving Tcds cytotoxicity, and particularly if TcdB induces senescence in EGCs.Rat-transformed EGCs were treated with 10?ng/ml TcdB for 6?h–48?h, or for 48?h, followed by incubation for additional 4 or 11?days in absence of TcdB (6 or 13 total days). Senescence markers/effectors were examined by specific assays.TcdB induces senescence in EGCs, as demonstrated by the senescence markers: irreversible cell-cycle arrest, senescence-associated-β?galactosidase positivity, flat morphology, early and persistent DNA damage (ATM and H2AX phosphorylation), p27 overexpression, pRB hypophosphorylation, c?Myc, cyclin B1, cdc2 and phosphorylated-cdc2 downregulation, Sirtuin?2 and Sirtuin?3 overexpression. TcdB-induced EGC senescence is dependent by JNK and AKT activation but independent by ROS, p16 and p53/p21 pathways.In conclusion, TcdB induces senescence in EGCs. The extrapolation of these results to CDI leads to hypothesize that EGCs that survived TcdB, once they have acquired a senescence state, could cause irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and tumors due to persistent inflammation, transfer of senescence status and stimulation of pre-neoplastic cells. 相似文献
68.
M Marconi B Ascione L Ciarlo R Vona T Garofalo M Sorice A M Gianni S L Locatelli C Carlo-Stella W Malorni P Matarrese 《Cell death & disease》2013,4(10):e863
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) acts as an apoptosis inducer for cancer cells sparing non-tumor cell targets. However, several phase I/II clinical trials have shown limited benefits of this molecule. In the present work, we investigated whether cell susceptibility to TRAIL ligation could be due to the presence of TRAIL death receptors (DRs) 4 and 5 in membrane microdomains called lipid rafts. We performed a series of analyses, either by biochemical methods or fluorescence resonance energy transfer (FRET) technique, on normal cells (i.e. lymphocytes, fibroblasts, endothelial cells), on a panel of human cancer B-cell lines as well as on CD19+ lymphocytes from patients with B-chronic lymphocytic leukemia, treated with different TRAIL ligands, that is, recombinant soluble TRAIL, specific agonistic antibodies to DR4 and DR5, or CD34+ TRAIL-armed cells. Irrespective to the expression levels of DRs, a molecular interaction between ganglioside GM3, abundant in lymphoid cells, and DR4 was detected. This association was negligible in all non-transformed cells and was strictly related to TRAIL susceptibility of cancer cells. Interestingly, lipid raft disruptor methyl-beta-cyclodextrin abrogated this susceptibility, whereas the chemotherapic drug perifosine, which induced the recruitment of TRAIL into lipid microdomains, improved TRAIL-induced apoptosis. Accordingly, in ex vivo samples from patients with B-chronic lymphocytic leukemia, the constitutive embedding of DR4 in lipid microdomains was associated per se with cell death susceptibility, whereas its exclusion was associated with TRAIL resistance. These results provide a key mechanism for TRAIL sensitivity in B-cell malignances: the association, within lipid microdomains, of DR4 but not DR5, with a specific ganglioside, that is the monosialoganglioside GM3. On these bases we suggest that lipid microdomains could exert a catalytic role for DR4-mediated cell death and that an ex vivo quantitative FRET analysis could be predictive of cancer cell sensitivity to TRAIL. 相似文献
69.
70.
Protection from bacterial infection by a single vaccination with replication-deficient mutant herpes simplex virus type 1 下载免费PDF全文
Lauterbach H Kerksiek KM Busch DH Berto E Bozac A Mavromara P Manservigi R Epstein AL Marconi P Brocker T 《Journal of virology》2004,78(8):4020-4028
Adaptive immune responses in which CD8(+) T cells recognize pathogen-derived peptides in the context of major histocompatibility complex class I molecules play a major role in the host defense against infection with intracellular pathogens. Cells infected with intracellular bacteria such as Listeria monocytogenes, Salmonella enterica serovar Typhimurium, or Mycobacterium tuberculosis are directly lysed by cytotoxic CD8(+) T cells. For this reason, current vaccines for intracellular pathogens, such as subunit vaccines or viable bacterial vaccines, aim to generate robust cytotoxic T-cell responses. In order to investigate the capacity of a herpes simplex virus type 1 (HSV-1) vector to induce strong cytotoxic effector cell responses and protection from infection with intracellular pathogens, we developed a replication-deficient, recombinant HSV-1 (rHSV-1) vaccine. We demonstrate in side-by-side comparison with DNA vaccination that rHSV-1 vaccination induces very strong CD8(+) effector T-cell responses. While both vaccines provided protection from infection with L. monocytogenes at low, but lethal doses, only rHSV-1 vaccines could protect from higher infectious doses; HSV-1 induced potent memory cytotoxic T lymphocytes that, upon challenge by pathogens, efficiently protected the animals. Despite the stimulation of relatively low humoral and CD4-T-cell responses, rHSV-1 vectors are strong candidates for future vaccine strategies that confer efficient protection from subsequent infection with intracellular bacteria. 相似文献