首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13057篇
  免费   1107篇
  国内免费   6篇
  14170篇
  2023年   76篇
  2022年   205篇
  2021年   305篇
  2020年   168篇
  2019年   300篇
  2018年   338篇
  2017年   295篇
  2016年   437篇
  2015年   694篇
  2014年   711篇
  2013年   903篇
  2012年   1066篇
  2011年   997篇
  2010年   633篇
  2009年   592篇
  2008年   772篇
  2007年   773篇
  2006年   658篇
  2005年   586篇
  2004年   523篇
  2003年   488篇
  2002年   430篇
  2001年   167篇
  2000年   146篇
  1999年   154篇
  1998年   119篇
  1997年   87篇
  1996年   78篇
  1995年   85篇
  1994年   82篇
  1993年   59篇
  1992年   111篇
  1991年   74篇
  1990年   63篇
  1989年   76篇
  1988年   61篇
  1987年   60篇
  1986年   60篇
  1985年   64篇
  1984年   38篇
  1983年   55篇
  1981年   29篇
  1980年   42篇
  1979年   56篇
  1978年   32篇
  1977年   31篇
  1976年   26篇
  1974年   47篇
  1972年   26篇
  1968年   27篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
The response to different dietary conditions of the enzymes responsible for the transformation of mevalonic acid to isopentenyl pyrophosphate has been studied for the first time in the small bowel of the chick to elucidate the role of these enzymes in the regulation of intestinal cholesterogenesis. Feeding a 2% cholesterol diet from hatching resulted in a small but significant inhibition of mevalonate-5-pyrophosphate decarboxylase, while mevalonate kinase and mevalonate-5-phosphate kinase remained unaltered. Similar results were obtained for the three enzymes when 13-day-old chicks fed a standard fat-free diet were switched to a 5% cholesterol diet. Starved chicks exhibited lower intestinal decarboxylase activity than chicks fed a standard diet, while refeeding resulted in levels of activity similar or slightly greater than controls. None of the enzymes effecting the conversion of mevalonate to isopentenyl pyrophosphate in the small intestine presented diurnal variations. Results obtained suggest that mevalonate-5-pyrophosphate decarboxylase may play a significant role in the regulation of cholesterol synthesis in the small intestine.  相似文献   
42.
The study presents a characterization of the refractory state in purified mouse Leydig cells desensitized by a single injection of human chorionic gonadotropin (hCG) in vivo. The treatment of mice with 1 microgram hCG i.p. for 48 h followed by Leydig cell isolation and purification resulted in a decrease in the maxima of hCG-induced cAMP accumulation and testosterone production by approximately 70% and approximately 55%, respectively, when compared to cells of control mice. Despite a 55% reduction in 125I-hCG binding sites, the sensitivity of stimulation was not changed. The refractoriness in testosterone production in vitro was also present when the Leydig cells were stimulated with cholera toxin or dibutyryl cAMP; however, it was not observed when testosterone production was induced by the addition of pregnenolone or 20 alpha- and 22(R)-hydroxycholesterol. Mouse lipoproteins, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in natural composition, were also able to overcome the steroidogenic block (although not always completely). On the basis of the cholesterol content of the lipoproteins, the two classes were similarly effective. They increased maximal hCG-induced testosterone production not only in desensitized cells, but also in control cells (by 80-100%), whereas their effect on basal testosterone production was negligible. In desensitized cells from hCG-treated mice (2 micrograms i.p., 48 h) cellular unesterified and esterified cholesterol were decreased by 21% and 81%, respectively, when compared to control cells. This loss occurred in the face of unchanged plasma cholesterol levels. In conclusion, our data indicate that the impaired steroidogenesis in mouse Leydig cells desensitized in vivo by a single injection of hCG is the result of a depletion in cellular cholesterol, rather than of an impaired conversion of cholesterol to testosterone.  相似文献   
43.
Summary A voltage-dependent anion-selective channel, VDAC, is found in outer mitochondrial membranes. VDAC's conductance is known to decrease as the transmembrane voltage is increased in either the positive or negative direction. Charged groups on the channel may be responsible for this voltage dependence by allowing the channel to respond to an applied electric field. If so, then neutralization of these charges would eliminate the voltage dependence. Channels in planar lipid bilayers which behaved normally at pH 6 lost much of their voltage dependence at high pH. Raising the pH reduced the steepness of the voltage dependence and raised the voltage needed to close half the channels. In contrast, the energy difference between the open and closed state in the absence of a field was changed very little by the elevated pH. The groups being titrated had an apparent pK of 10.6. From the pK and chemical modification, lysine epsilon amino groups are the most likely candidates responsible for VDAC's ability to respond to an applied electric field.  相似文献   
44.
Summary Southern Corn Leaf Blight is caused by a toxin produced by a virulent form ofHelminthosporium maydis (Race T). The toxin has been shown to uncouple oxidative phosphorylation and dissipate Ca2+ gradients in mitochondria isolated from susceptible, but not resistant, corn. The possibility that the toxin acted by increasing the permeability of membranes to ions was tested using a planar bilayer membrane system. Addition of the toxin to the bilayer system, under voltage-clamp conditions, resulted in stepwise increases in current across the phospholipid bilayer, a response characteristic for channel formers. Single-channel conductance in 1m KCl is 27 pS which corresponds to 1.7×107 ions sec–1 channel–1 at 100 mV applied potential. The toxin channels are: (i) fairly uniform in conductance, (ii) ideally selective for K+ over Cl, and (iii) most conductive to H+. The channel showed the following selectivity for alkali metal cations: Rb+>K+>Cs+>Na+>Li+ (169731) based on the most frequently observed conductance in 1m chloride salts. The toxin showed no voltage dependence over the range of –100 to +100 mV. Channel formation was also a property of a synthetic analog (Cmpd IV) of the toxin. The ability of the native toxin to form channels may be a mode of toxin action on mitochondrial membranes from susceptible corn.  相似文献   
45.
46.
Treatment of purified tails of bacteriophage T5 with 0.05% sodium dodecyl sulfate specifically removed pb2, a protein of 108,000 molecular weight (108K), from the tail. Although these tails were devoid of the single straight tail fiber, they still inhibited adsorption of T5 to Escherichia coli cells. Reconstitution of these tails with pb2 increased the efficiency of inhibition of T5 adsorption. Treatment of tails with 0.1% sodium dodecyl sulfate removed, in addition to pb2, a protein of 67K from phage T5 and one of 60K from phage BF23. These tails failed to inhibit phage adsorption, and no reconstitution was achieved. Reconstitution of T5 tails with pb2 from BF23, and of BF23 tails with pb2 from T5, did not alter the host receptor specificity of the tails. Binding of untreated T5 tails to small FhuA receptor particles revealed that binding occurred with the conical part of the tail and that pb2 was most likely released from the tail upon binding. From these results and from recent observations with T5-BF23 hybrid phages (K.J. Heller, Virology 139:11-21, 1984), we conclude that the receptor-binding proteins of T5 and BF23 are the 67K and 60K proteins, respectively, and that they are not located at the tip of the tail but rather at or near the site where the straight tail fiber is attached to the conical part of the tail.  相似文献   
47.
We have isolated a cAMP-binding protein from highly purified yeast mitochondria by affinity chromatography. It is a lipophilic protein of molecular mass 45 000 Da, which is tightly membrane-bound and localized on the outer surface of the inner membrane. It can be solubilized in active form under mild conditions. The cAMP receptor resembles mitochondrial RNA polymerase prepared as described by Levens et al. [(1981) J. Biol. Chem. 256, 1474] in a surprisingly large number of properties including molecular mass. Comparison of the two proteins revealed that the polypeptide previously considered as RNA polymerase is, in fact, a mitochondrial cAMP receptor protein.  相似文献   
48.
Uridine diphospho glucose (UDP-Glc) and uridine diphospho N-acetylglucosamine (UDP-GlcNAc), modified in the uridine moiety by either periodate oxidation of the ribose ring or substitution at position 5 of the uracil ring with fluorine, have been tested as potential inhibitors of glucosyl monophosphoryl dolichol (Glc-P-Dol) or N,N-diacetylchitobiosyl pyrophosphoryl dolichol [GlcNAc)2-PP-Dol) assembly in chick embryo cell membranes. The periodate oxidised sugar nucleotides inhibited glycosyl transfer from their respective natural counterparts by 50% at 230 micron periodate oxidised UDP-Glc and 70 micron periodate oxidised UDP-GlcNAc respectively. Inhibition in both cases was irreversible and addition of exogenous Dol-P stimulated only the residual non-inhibited reaction. Periodate oxidised UDP-GlcNAc preferentially inhibited the transfer of GlcNAc to GlcNac-PP-Dol. The sugar nucleotide containing 5-fluorouridine were, on the other hand, alternative substrates for Glc-P-Dol or (GlcNAc)2-PP-Dol synthesis. FUDP-Glc was a good substrate for Glc-P-Dol formation; having Km and Vmax values equal to those of UDP-Glc, whereas FUDP-GlcNAc was a less efficient substrate for the formation of (GlcNAc)2-PP-Dol; having Km and Vmax values one half and one third respectively of those of UDP-GlcNAc.  相似文献   
49.
The glucosidase inhibitors 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin and castanospermine were used to inhibit oligosaccharide processing in primary cultures of rat hepatocytes. Their effect on the glycosylation of alpha 1-proteinase inhibitor (alpha 1PI) and alpha 1-acid glycoprotein (alpha 1AGP) was studied. Of the three glucosidase inhibitors examined, 1-deoxynojirimycin inhibited not only oligosaccharide trimming but also glycosylation de novo of newly synthesized proteins, resulting in the formation of alpha 1PI with two and three (normally carrying three) and alpha 1AGP with two to five (normally carrying six) oligosaccharide side chains. In the presence of the glucosidase inhibitors, glucosylated high-mannose-type oligosaccharides accumulated. Whereas most of the endoglucosaminidase-H-sensitive oligosaccharides formed in the presence of 1-deoxynojirimycin contained only one glucose residue, N-methyl-1-deoxynojirimycin and castanospermine led mainly to the formation of oligosaccharides with three glucose residues. None of the three glucosidase inhibitors completely prevented the formation of complex-type oligosaccharides. Thus, in their presence, alpha 1PI and alpha 1AGP with a mixture of both high-mannose and complex-type oligosaccharides were secreted.  相似文献   
50.
The sugar nucleotide analogue UDP-glucosamine was found to function as a sugar donor in microsomal preparations of both chick-embryo cells and rat liver, yielding dolichyl monophosphate glucosamine (Dol-P-GlcN). This was characterized by t.l.c. and retention by DEAE-cellulose. Glucosamine was the only water-soluble product released on mild acid hydrolysis. Dol-P-GlcN did not serve as substrate by transferring its glucosamine moiety to dolichol-linked oligosaccharide. Competition experiments between UDP-[3H]glucose and UDP-glucosamine showed Dol-P-[3H]glucose synthesis to be depressed by 56 or 73% in microsomes from chick-embryo cells and rat liver respectively. The concentrations of the UDP-sugars in this experiment were comparable with those occurring in galactosamine-metabolizing liver. These findings suggest that Dol-P-GlcN, formed as a metabolite of D-galactosamine, may interfere with Dol-P-dependent reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号