首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11604篇
  免费   895篇
  国内免费   6篇
  2023年   70篇
  2022年   163篇
  2021年   297篇
  2020年   165篇
  2019年   313篇
  2018年   332篇
  2017年   289篇
  2016年   413篇
  2015年   645篇
  2014年   681篇
  2013年   873篇
  2012年   1005篇
  2011年   932篇
  2010年   585篇
  2009年   561篇
  2008年   679篇
  2007年   683篇
  2006年   594篇
  2005年   533篇
  2004年   478篇
  2003年   422篇
  2002年   385篇
  2001年   125篇
  2000年   80篇
  1999年   104篇
  1998年   104篇
  1997年   75篇
  1996年   72篇
  1995年   71篇
  1994年   70篇
  1993年   47篇
  1992年   67篇
  1991年   50篇
  1990年   37篇
  1989年   48篇
  1988年   29篇
  1987年   37篇
  1986年   35篇
  1985年   37篇
  1984年   23篇
  1983年   37篇
  1982年   18篇
  1981年   15篇
  1980年   20篇
  1979年   31篇
  1978年   16篇
  1977年   17篇
  1975年   14篇
  1974年   21篇
  1968年   15篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
The broad prediction that ectotherms will be more vulnerable to climate change in the tropics than in temperate regions includes assumptions about centre/edge population effects that can only be tested by within‐species comparisons across wide latitudinal gradients. Here, we investigated the thermal vulnerability of two mangrove crab species, comparing populations at the centre (Kenya) and edge (South Africa) of their distributions. At the same time, we investigated the role of respiratory mode (water‐ versus air‐breathing) in determining the thermal tolerance in amphibious organisms. To do this, we compared the vulnerability to acute temperature fluctuations of two sympatric species with two different lifestyle adaptations: the free living Perisesarma guttatum and the burrowing Uca urvillei, both pivotal to the ecosystem functioning of mangroves. The results revealed the air‐breathing U. urvillei to be a thermal generalist with much higher thermal tolerances than P. guttatum. Importantly, however, we found that, while U. urvillei showed little difference between edge and centre populations, P. guttatum showed adaptation to local conditions. Equatorial populations had elevated tolerances to acute heat stress and mechanisms of partial thermoregulation, which make them less vulnerable to global warming than temperate conspecifics. The results reveal both the importance of respiratory mode to thermal tolerance and the unexpected potential for low latitude populations/species to endure a warming climate. The results also contribute to a conceptual model on the latitudinal thermal tolerance of these key species. This highlights the need for an integrated population‐level approach to predict the consequences of climate change.  相似文献   
992.
993.
Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses.  相似文献   
994.
Freshwater mussels of the order Unionoida have life cycles that include larval attachment to and later metamorphosis on suitable host fishes. Information on the trophic relationship between unionoid larvae and their host fishes is scarce. We investigated the trophic interaction between fish hosts and encysted larvae of two species of freshwater mussels, Margaritifera margaritifera and Unio crassus, using stable isotope analyses of larvae and juvenile mussels as well as of host fish gill and muscle tissues before and after infestation. Due to different life histories and durations of host‐encystment, mass and size increase in M. margaritifera during the host‐dependent phase were greater than those of U. crassus. δ13C and δ15N signatures of juvenile mussels approached isotopic signatures of fish tissues, indicating a parasitic relationship between mussels and their hosts. Shifts were more pronounced for M. margaritifera, which had a five‐fold longer host‐dependent phase than U. crassus. The results of this study suggest that stable isotope analyses are a valuable tool for characterizing trophic relationships and life history strategies in host–parasite systems. In the case of unionoid mussels, stable isotopic shifts of the larvae are indicative of the nutritional versus phoretic importance of the host.  相似文献   
995.
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.  相似文献   
996.
Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea‐ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton‐feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz‐Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea‐ice and coastal glacier dynamics collected in our study area across 1979–2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz‐Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea‐ice retreated markedly during the last decade, leaving the Franz‐Josef Land archipelago virtually sea‐ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea‐ice‐associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice‐edge localities, to highly profitable feeding at glacier melt‐water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future polar ecosystem dynamics.  相似文献   
997.
998.
999.
1000.
Originality measures how different a given species is from all other co‐occurring species regarding either their phylogenetic history or functional traits. Since it is important to preserve the various aspects of diversity and original species carry more phylogenetic or functional information, originality may be used to assign conservation priorities. Our goal was to evaluate the relationships between phylogenetic and functional originalities, and their simulated losses under extinction scenarios based on abundance, fire tolerance and habitat preference. We placed 100 plots in a cerrado reserve located in central Brazil, sampled all woody plants species within the plots, measured 14 functional traits and measured fire history. We assembled a phylogenetic tree and a functional dendrogram, with which we calculated the originalities. Phylogenetic‐ and functional‐based originalities were correlated. However, the loss of functional originality was different from random extinctions on the abundance and fire tolerance scenarios, whereas the loss of phylogenetic originality was not. When compared with phylogenetic originality, functional originality brought more information to be used in conservation strategies because it was sensitive to differences in species abundance and fire tolerance. Thus, the extinction of rare or fire‐sensitive species would result in important functional changes due to loss of distinctive traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号