首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10866篇
  免费   850篇
  国内免费   6篇
  11722篇
  2023年   72篇
  2022年   186篇
  2021年   280篇
  2020年   155篇
  2019年   282篇
  2018年   310篇
  2017年   276篇
  2016年   399篇
  2015年   624篇
  2014年   633篇
  2013年   822篇
  2012年   954篇
  2011年   899篇
  2010年   556篇
  2009年   537篇
  2008年   649篇
  2007年   660篇
  2006年   558篇
  2005年   501篇
  2004年   444篇
  2003年   400篇
  2002年   368篇
  2001年   94篇
  2000年   61篇
  1999年   82篇
  1998年   93篇
  1997年   67篇
  1996年   61篇
  1995年   67篇
  1994年   62篇
  1993年   42篇
  1992年   55篇
  1991年   41篇
  1990年   28篇
  1989年   42篇
  1988年   24篇
  1987年   27篇
  1986年   27篇
  1985年   31篇
  1984年   19篇
  1983年   27篇
  1982年   14篇
  1981年   12篇
  1980年   18篇
  1979年   23篇
  1978年   15篇
  1977年   15篇
  1974年   15篇
  1972年   11篇
  1968年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
Summary Se-Carboxymethyl-DL-selenocysteine (CMSeC) has been prepared in a pure crystalline form from selenocysteine and monochloroacetic acid. It has been shown that CMSeC is a substrate for the L-aminoacid oxidase from snake venom and for the D-aspartate oxidase from beef kidney. Oxygen consumption and ammonia production indicate that only the L or the D form of CMSeC are acted upon respectively by one or the other of the above enzymes. No noticeable differences were shown in the oxidation rate of CMSeC and S-carboxymethylcysteine, an indication that the substitution of a selenium for a sulfur atom in the molecule does not greatly affect the substrate specificity of the two enzymes. Data have been obtained suggesting that the product of the oxidative deamination of CMSeC is Se-carboxymethyl-selenopyruvic acid.  相似文献   
104.
Summary We have incorporated into planar lipid bilayer membranes a voltage-dependent, anion-selective channel (VDAC) obtained fromParamecium aurelia. VDAC-containing membranes have the following properties: (1) The steady-state conductance of a many-channel membrane is maximal when the transmembrane potential is zero and decreases as a steep function of both positive and negative voltage. (2) The fraction of time that an individual channel stays open is strongly voltage dependent in a manner that parallels the voltage dependence of a many-channel membrane. (3) The conductance of the open channel is about 500 pmho in 0.1 to 1.0m salt solutions and is ohmic. (4) The channel is about 7 times more permeable to Cl than to K+ and is impermeable to Ca++. The procedure for obtaining VDAC and the properties of the channel are highly reproducible.VDAC activity was found, upon fractionation of the paramecium membranes, to come from the mitochondria. We note that the published data on mitochondrial Cl permeability suggest that there may indeed be a voltage-dependent Cl permeability in mitochondria.The method of incorporating VDAC into planar lipid bilayers may be generally useful for reconstituting biological transport systems in these membranes.  相似文献   
105.
106.
107.
BackgroundLand plants commonly produce red pigmentation as a response to environmental stressors, both abiotic and biotic. The type of pigment produced varies among different land plant lineages. In the majority of species they are flavonoids, a large branch of the phenylpropanoid pathway. Flavonoids that can confer red colours include 3-hydroxyanthocyanins, 3-deoxyanthocyanins, sphagnorubins and auronidins, which are the predominant red pigments in flowering plants, ferns, mosses and liverworts, respectively. However, some flowering plants have lost the capacity for anthocyanin biosynthesis and produce nitrogen-containing betalain pigments instead. Some terrestrial algal species also produce red pigmentation as an abiotic stress response, and these include both carotenoid and phenolic pigments.ScopeIn this review, we examine: which environmental triggers induce red pigmentation in non-reproductive tissues; theories on the functions of stress-induced pigmentation; the evolution of the biosynthetic pathways; and structure–function aspects of different pigment types. We also compare data on stress-induced pigmentation in land plants with those for terrestrial algae, and discuss possible explanations for the lack of red pigmentation in the hornwort lineage of land plants.ConclusionsThe evidence suggests that pigment biosynthetic pathways have evolved numerous times in land plants to provide compounds that have red colour to screen damaging photosynthetically active radiation but that also have secondary functions that provide specific benefits to the particular land plant lineage.  相似文献   
108.
IntroductionAcute Myeloid Leukaemia (AML) is the most common blood cancer in adults. Although 2 out of 3 AML patients go into total remission after chemotherapies and targeted therapies, the disease recurs in 60%–65% of younger adult patients within 3 years after diagnosis with a dramatically decreased survival rate. Therapeutic oligonucleotides are promising treatments under development for AML as they can be designed to silence oncogenes with high specificity and flexibility. However, there are not many well validated approaches for safely and efficiently delivering oligonucleotide drugs. This issue could be resolved by utilizing a new generation of delivery vehicles such as extracellular vesicles (EVs).MethodsIn this study, we harness red blood cell‐derived EVs (RBCEVs) and engineer them via exogenous drug loading and surface functionalization to develop an efficient drug delivery system for AML. Particularly, EVs are designed to target CD33, a common surface marker with elevated expression in AML cells via the conjugation of a CD33‐binding monoclonal antibody onto the EV surface.ResultsThe conjugation of RBCEVs with the CD33‐binding antibody significantly increases the uptake of RBCEVs by CD33‐positive AML cells, but not by CD33‐negative cells. We also load CD33‐targeting RBCEVs with antisense oligonucleotides (ASOs) targeting FLT3‐ITD or miR‐125b, 2 common oncogenes in AML, and demonstrate that the engineered EVs improve leukaemia suppression in in vitro and in vivo models of AML.ConclusionTargeted RBCEVs represent an innovative, efficient, and versatile delivery platform for therapeutic ASOs and can expedite the clinical translation of oligonucleotide drugs for AML treatments by overcoming current obstacles in oligonucleotide delivery.

In this study, we harness red blood cell‐derived EVs (RBCEVs) and engineer them with surface functionalization and exogenous drug loading to develop an efficient drug delivery system for AML. Anti‐CD33 antibody was conjugated to RBCEVs using an enzymatic method combined with the streptavidin‐biotin system. We load the antibody conjugated RBCEVs with ASOs targeting FLT3‐ITD or miR‐125b, 2 common oncogenes in AML, and demonstrate that the treatment with engineered EVs improve leukaemia suppression both in vitro and in vivo.  相似文献   
109.
The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long‐term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3‐PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960–2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha?1 year?1 km?1 for P. abies and 0.93 ± 0.010 Mg C ha?1 year?1 km?1 for F. sylvatica). During warm–dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm‐dry extremes. Importantly, cold–dry extremes had negative impacts on regional forest NPP comparable to warm–dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.  相似文献   
110.
We present a 3D double sensitivity enhanced X-filtered homonuclear TOCSY-TOCSY experiment for the assignment of unlabeled molecules complexed to labeled protein- or nucleic acid-domains. The resulting spectrum is clean, can be measured in a reasonable amount of time and allows for increased resolution of overlapping resonances when compared to 2D methods. The 3D X-filtered TOCSY-TOCSY allows for assignment in cases where the size or the composition of the unlabeled molecule results in a high degree of overlap.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号