首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12852篇
  免费   994篇
  国内免费   13篇
  13859篇
  2023年   81篇
  2022年   225篇
  2021年   349篇
  2020年   189篇
  2019年   331篇
  2018年   367篇
  2017年   331篇
  2016年   464篇
  2015年   721篇
  2014年   745篇
  2013年   936篇
  2012年   1107篇
  2011年   1061篇
  2010年   653篇
  2009年   625篇
  2008年   761篇
  2007年   787篇
  2006年   683篇
  2005年   615篇
  2004年   555篇
  2003年   496篇
  2002年   453篇
  2001年   111篇
  2000年   66篇
  1999年   94篇
  1998年   111篇
  1997年   80篇
  1996年   68篇
  1995年   76篇
  1994年   71篇
  1993年   47篇
  1992年   62篇
  1991年   46篇
  1990年   33篇
  1989年   46篇
  1988年   28篇
  1987年   28篇
  1986年   32篇
  1985年   34篇
  1984年   23篇
  1983年   31篇
  1982年   19篇
  1981年   15篇
  1980年   20篇
  1979年   28篇
  1978年   15篇
  1977年   16篇
  1974年   15篇
  1973年   12篇
  1972年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
Mutations of the p62/Sequestosome 1 gene (p62/SQSTM1) account for both sporadic and familial forms of Paget's disease of bone (PDB). We originally described a methionine-->valine substitution at codon 404 (M404V) of exon 8, in the ubiquitin protein-binding domain of p62/SQSTM1 gene in an Italian PDB patient. The collection of data from the patient's pedigree provided evidence for a familial form of PDB. Extension of the genetic analysis to other relatives in this family demonstrated segregation of the M404V mutation with the polyostotic PDB phenotype and provided the identification of six asymptomatic gene carriers. DNA for mutational analysis of the exon 8 coding sequence was obtained from 22 subjects, 4 PDB patients and 18 clinically unaffected members. Of the five clinically ascertained affected members of the family, four possessed the M404V mutation and exhibited the polyostotic form of PDB, except one patient with a single X-ray-assessed skeletal localization and one with a polyostotic disease who had died several years before the DNA analysis. By both reconstitution and mutational analysis of the pedigree, six unaffected subjects were shown to bear the M404V mutation, representing potential asymptomatic gene carriers whose circulating levels of alkaline phosphatase were recently assessed as still within the normal range. Taken together, these results support a genotype-phenotype correlation between the M404V mutation in the p62/SQSTM1 gene and a polyostotic form of PDB in this family. The high penetrance of the PDB trait in this family together with the study of the asymptomatic gene carriers will allow us to confirm the proposed genotype-phenotype correlation and to evaluate the potential use of mutational analysis of the p62/SQSTM1 gene in the early detection of relatives at risk for PDB.  相似文献   
163.
Iron overload aggravates tissue damage caused by ischemia and ethanol intoxication. The underlying mechanisms of this phenomenon are not yet clear. To clarify these mechanisms we followed free iron (“loosely” bound redox-active iron) concentration in livers from rats subjected to experimental iron overload, acute ethanol intoxication, and ex vivo warm ischemia. The levels of free iron in non-homogenized liver tissues, liver homogenates, and hepatocyte cultures were analyzed by means of EPR spectroscopy. Ischemia gradually increased the levels of endogenous free iron in liver tissues and in liver homogenates. The increase was accompanied by the accumulation of lipid peroxidation products. Iron overload alone, known to increase significantly the total tissue iron, did not affect either free iron levels or lipid peroxidation. Homogenization of iron-loaded livers, however, resulted in the release of a significant portion of free iron from endogenous depositories. Acute ethanol intoxication increased free iron levels in liver tissue and diminished the portion of free iron releasing during homogenization. Similarly to liver tissue, the primary hepatocyte culture loaded with iron in vitro released significantly more free iron during homogenization compared to non iron-loaded hepatocyte culture. Analyzing three possible sources of free iron release under these experimental conditions in liver cells, namely ferritin, intracellular transferrin-receptor complex and heme oxygenase, we suggest that redox active free iron is released from ferritin under ischemic conditions whereas ethanol and homogenization facilitate the release of iron from endosomes containing transferrin-receptor complexes.  相似文献   
164.
165.
Dopamine is a neurotransmitter that plays a major role in a variety of brain functions, as well as in disorders such as Parkinson disease and schizophrenia. In cultured astrocytes, we have found that dopamine induces sporadic cytoplasmic calcium ([Ca2+]c) signals. Importantly, we show that the dopamine-induced calcium signaling is receptor-independent in midbrain, cortical, and hippocampal astrocytes. We demonstrate that the calcium signal is initiated by the metabolism of dopamine by monoamine oxidase, which produces reactive oxygen species and induces lipid peroxidation. This stimulates the activation of phospholipase C and subsequent release of calcium from the endoplasmic reticulum via the inositol 1,4,5-trisphosphate receptor mechanism. These findings have major implications on the function of astrocytes that are exposed to dopamine and may contribute to understanding the physiological role of dopamine.  相似文献   
166.
We have previously observed that TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces acquired TRAIL resistance by increasing Akt phosphorylation and Bcl-xL expression. In this study, we report that Src, c-Cbl, and PI3K are involved in the phosphorylation of Akt during TRAIL treatment. Data from immunoprecipitation and immunoblotting assay reveal that Src interacts with c-Cbl and PI3K. Data from immune complex kinase assay demonstrate that Src can directly phosphorylate c-Cbl and PI3K p85 subunit protein. Data from gene knockdown experiments with an RNA interference (RNAi) technique show that c-Cbl is involved in the interaction between Src and PI3K p85 during TRAIL treatment, playing an important role in TRAIL-induced Akt phosphorylation. Taken together, c-Cbl may act as a mediator to regulate the Src-PI3K-Akt signal transduction pathway during TRAIL treatment.  相似文献   
167.
BACKGROUND: Intra-peritoneal adipose tissue is recognized as a predictor of metabolic syndrome and may contribute to the risk for cardiovascular disease by the production of adipocytokines, including adiponectin. Nevertheless, there is no knowledge on whether other visceral depots of adipose tissue, including the epicardial fat, have any metabolically active role, including production of adiponectin. AIM OF THE STUDY: We sought to evaluate adiponectin protein expression in epicardial adipose tissue in vivo both in patients with severe coronary artery disease (CAD) and in subjects without CAD. METHODS: Twenty-two patients were enrolled for the study. We selected 16 patients who underwent elective coronary artery bypass graft surgery for critical CAD, 5 who underwent surgery for valve replacement and 1 for correction of an interatrial defect. Epicardial adipose tissue biopsy samples were obtained before the initiation of cardiopulmonary bypass. Adiponectin protein level in epicardial adipose tissue was evaluated by Western blotting. RESULTS: Adiponectin protein value, expressed as adiponectin/actin ratio, in epicardial adipose tissue was significantly lower in patients with severe CAD than in those without CAD (1.42 +/- 0.77 vs 2.36 +/- 0.84 p = 0.02, 95% CI 0.64-1.74). CONCLUSIONS: This study showed for the first time that human epicardial adipose tissue expresses adiponectin. Adiponectin expression is significantly lower in epicardial fat isolated from patients with CAD.  相似文献   
168.
The monomeric model of rhodopsin-like G protein-coupled receptors (GPCRs) has progressively yielded the floor to the concept of GPCRs being oligo(di)mers, but the functional correlates of dimerization remain unclear. In this report, dimers of glycoprotein hormone receptors were demonstrated in living cells, with a combination of biophysical (bioluminescence resonance energy transfer and homogenous time resolved fluorescence/fluorescence resonance energy transfer), functional and biochemical approaches. Thyrotropin (TSHr) and lutropin (LH/CGr) receptors form homo- and heterodimers, via interactions involving primarily their heptahelical domains. The large hormone-binding ectodomains were dispensable for dimerization but modulated protomer interaction. Dimerization was not affected by agonist binding. Observed functional complementation indicates that TSHr dimers may function as a single functional unit. Finally, heterologous binding-competition studies, performed with heterodimers between TSHr and LH/CG-TSHr chimeras, demonstrated the unsuspected existence of strong negative cooperativity of hormone binding. Tracer desorption experiments indicated an allosteric behavior in TSHr and, to a lesser extent, in LH/CGr and FSHr homodimers. This study is the first report of homodimerization associated with negative cooperativity in rhodopsin-like GPCRs. As such, it may warrant revisitation of allosterism in the whole GPCR family.  相似文献   
169.
The effectiveness of biosparging to mitigate N,N diethylaniline in aquifer was evaluated by measuring the time course of decrease in concentration of the aforementioned compound in aerobic microcosm experiments. The first-order kinetic constant for N,N diethylaniline aerobic biodegradation was estimated from microcosm data (0.037 ± 0.004 d−1), and the value was consistent with the best-fitting value in the transport and reaction model of the aquifer (0.020 d−1). Furthermore, the biodegradability of the compound was evaluated under anaerobic condition in microcosm experiments, which was supported by field modelling. There was no significant degradation in the anaerobic microcosm experiments, confirming the recalcitrance of N,N diethyl aniline under the aforementioned aquifer condition.  相似文献   
170.
Microtubules are supramolecular structures that make up the cytoskeleton and strongly affect the mechanical properties of the cell. Within the cytoskeleton filaments, the microtubule (MT) exhibits by far the highest bending stiffness. Bending stiffness depends on the mechanical properties and intermolecular interactions of the tubulin dimers (the MT building blocks). Computational molecular modeling has the potential for obtaining quantitative insights into this area. However, to our knowledge, standard molecular modeling techniques, such as molecular dynamics (MD) and normal mode analysis (NMA), are not yet able to simulate large molecular structures like the MTs; in fact, their possibilities are normally limited to much smaller protein complexes. In this work, we developed a multiscale approach by merging the modeling contribution from MD and NMA. In particular, MD simulations were used to refine the molecular conformation and arrangement of the tubulin dimers inside the MT lattice. Subsequently, NMA was used to investigate the vibrational properties of MTs modeled as an elastic network. The coarse-grain model here developed can describe systems of hundreds of interacting tubulin monomers (corresponding to up to 1,000,000 atoms). In particular, we were able to simulate coarse-grain models of entire MTs, with lengths up to 350 nm. A quantitative mechanical investigation was performed; from the bending and stretching modes, we estimated MT macroscopic properties such as bending stiffness, Young modulus, and persistence length, thus allowing a direct comparison with experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号