首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1576篇
  免费   80篇
  1656篇
  2024年   3篇
  2023年   8篇
  2022年   26篇
  2021年   47篇
  2020年   36篇
  2019年   30篇
  2018年   59篇
  2017年   52篇
  2016年   69篇
  2015年   90篇
  2014年   94篇
  2013年   108篇
  2012年   155篇
  2011年   136篇
  2010年   94篇
  2009年   50篇
  2008年   98篇
  2007年   99篇
  2006年   91篇
  2005年   81篇
  2004年   70篇
  2003年   68篇
  2002年   48篇
  2001年   9篇
  2000年   4篇
  1999年   1篇
  1998年   8篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1980年   4篇
  1978年   1篇
排序方式: 共有1656条查询结果,搜索用时 15 毫秒
101.
102.
Metazoan replication-dependent histone mRNAs are only present in S-phase, due partly to changes in their stability. These mRNAs end in a unique stem–loop (SL) that is required for both translation and cell-cycle regulation. Previous studies showed that histone mRNA degradation occurs through both 5′→3′ and 3′→5′ processes, but the relative contributions are not known. The 3′ end of histone mRNA is oligouridylated during its degradation, although it is not known whether this is an essential step. We introduced firefly luciferase reporter mRNAs containing the histone 3′ UTR SL (Luc-SL) and either a normal or hDcp2-resistant cap into S-phase HeLa cells. Both mRNAs were translated, and translation initially protected the mRNAs from degradation, but there was a lag of ∼40 min with the uncleavable cap compared to ∼8 min for the normal cap before rapid decay. Knockdown of hDcp2 resulted in a similar longer lag for Luc-SL containing a normal cap, indicating that 5′→3′ decay is important in this system. Inhibition of DNA replication with hydroxyurea accelerated the degradation of Luc-SL. Knockdown of terminal uridyltransferase (TUTase) 4 but not TUTase 3 slowed the decay process, but TUTase 4 knockdown had no effect on destabilization of the mRNA by hydroxyurea. Both Luc-SL and its 5′ decay intermediates were oligouridylated. Preventing oligouridylation by 3′-deoxyadenosine (cordycepin) addition to the mRNA slowed degradation, in the presence or absence of hydroxyurea, suggesting oligouridylation initiates degradation. The spectrum of oligouridylated fragments suggests the 3′→5′ degradation machinery stalls during initial degradation, whereupon reuridylation occurs.  相似文献   
103.
104.
Pedunculate oak (Quercus robur) is an ecologically and economically important forest tree species which produces seeds that are classified as recalcitrant. Thus, cryopreservation of seed meristems is a method for long-term preservation of this germplasm in gene banks. During cryopreservation, many factors, such as desiccation, cryoprotection and cooling/rewarming, can induce stress in the frozen meristems. In this study, in vitro survival and the global DNA methylation level of plumules after cryoprotection, desiccation and cryostorage was evaluated. Results indicated that both desiccation and storage in liquid nitrogen have negligible influence on DNA methylation status of Q. robur plumules. These findings support the cryopreservation of plumules as an appropriate method for conservation of Q. robur germplasm.  相似文献   
105.
The Pictet–Spengler (PS) reaction was performed with various types of substrates: H‐Trp‐OMe and dipeptides with N‐terminal Trp as arylethylamine components and Z‐protected amino aldehydes and peptidoaldehydes as carbonyl components. We found that the C‐terminal part of Trp derivatives did not have any influence on the stereoselectivity of the reaction and the results are the same for simple esters of Trp and dipeptides. On the contrary, the selectivity of the PS reaction with peptidoaldehydes with L configuration of the C‐terminus residue is totally different from that obtained with simple L‐amino aldehydes. It allows us to obtain cis stereoisomers, which cannot be isolated from the reaction with amino aldehydes. But the utility of the peptidoaldehydes as substrates for the PS reaction is reduced by the side formation of enamides which decrease the yield of cyclization. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
106.
107.
Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.  相似文献   
108.

Objectives

To investigate the ability of the proteases, subtilisin and α-chymotrypsin (aCT), to inhibit the adhesion of Candida albicans biofilm to a polypropylene surface.

Results

The proteases were immobilized on plasma-treated polypropylene by covalently linking them with either glutaraldehyde (GA) or N′-diisopropylcarbodiimide (DIC) and N-hydroxysuccinimide (NHS). The immobilization did not negatively affect the enzyme activity and in the case of subtilisin, the activity was up to 640% higher than that of the free enzyme when using N-acetyl phenylalanine ethyl ester as the substrate. The efficacies against biofilm dispersal for the GA-linked SubC and aCT coatings were 41 and 55% higher than the control (polypropylene coated with only GA), respectively, whereas no effect was observed with enzymes immobilized with DIC and NHS. The higher dispersion efficacy observed for the proteases immobilized with GA could be both steric (proper orientation of the active site) and dynamic (higher protein mobility/flexibility).

Conclusions

Proteases immobilized on a polypropylene surface reduced the adhesion of C. albicans biofilms and therefore may be useful in developing anti-biofilm surfaces based on non-toxic molecules and sustainable strategies.
  相似文献   
109.

Purpose

The aim of this study was to compare changes in total oxidative status (TOS), total antioxidative capacity (TAC) and the concentration of VitA, VitE, VitC, uric acid (UA), reduced (GSH) and oxidized glutathione (GSSG) in blood within 24 hours following anaerobic exercise (AnEx) among men and women.

Methods

10 women and 10 men performed a 20-second bicycle sprint (AnEx). Concentrations of oxidative stress indicators were measured before AnEx and 3, 15 and 30 minutes and 1 hour afterwards. UA, GSH and GSSH were also measured 24 hours after AnEx. Lactate and H+ concentrations were measured before and 3 minutes after AnEx.

Results

The increase in lactate and H+ concentrations following AnEx was similar in both sexes. Changes in the concentrations of all oxidative stress indicators were significant and did not differ between men and women. In both sexes, TOS, TAC, TOS/TAC and VitA and VitE concentrations were the highest 3 minutes, VitC concentration was the highest 30 minutes, and UA concentration was the highest 1 hour after AnEx. GSH concentration was significantly lower than the initial concentration from 15 minutes to 24 hour after AnEx. GSSG concentration was significantly higher, while the GSH/GSSG ratio was significantly lower than the initial values 1 hour and 24 hour after AnEx.

Conclusions

With similar changes in lactate and H+ concentrations, AnEx induces the same changes in TAC, TOS, TOS/TAC and non-enzymatic antioxidants of low molecular weight in men and women. Oxidative stress lasted at least 24 hours after AnEx.  相似文献   
110.
Homologous recombination was shown to enable the expansion of CTG.CAG repeat sequences. Other prior investigations revealed the involvement of replication and DNA repair in these genetic instabilities. Here we used a genetic assay to measure the frequency of homologous intermolecular recombination between two CTG.CAG tracts. When compared with non-repeating sequences of similar lengths, long (CTG.CAG)(n) repeats apparently recombine with an approximately 60-fold higher frequency. Sequence polymorphisms that interrupt the homogeneity of the CTG.CAG repeat tracts reduce the apparent recombination frequency as compared with the pure uninterrupted repeats. The orientation of the repeats relative to the origin of replication strongly influenced the apparent frequency of recombination. This suggests the involvement of DNA replication in the recombination process of triplet repeats. We propose that DNA polymerases stall within the CTG.CAG repeat tracts causing nicks or double-strand breaks that stimulate homologous recombination. The recombination process is RecA-dependent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号