首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1505篇
  免费   113篇
  国内免费   1篇
  1619篇
  2023年   5篇
  2022年   12篇
  2021年   24篇
  2020年   20篇
  2019年   20篇
  2018年   30篇
  2017年   24篇
  2016年   50篇
  2015年   54篇
  2014年   77篇
  2013年   77篇
  2012年   107篇
  2011年   90篇
  2010年   78篇
  2009年   57篇
  2008年   66篇
  2007年   98篇
  2006年   84篇
  2005年   72篇
  2004年   87篇
  2003年   75篇
  2002年   65篇
  2001年   16篇
  2000年   10篇
  1999年   14篇
  1998年   21篇
  1997年   15篇
  1996年   14篇
  1995年   12篇
  1994年   20篇
  1993年   17篇
  1992年   15篇
  1991年   19篇
  1990年   10篇
  1989年   12篇
  1988年   11篇
  1987年   8篇
  1986年   13篇
  1985年   8篇
  1984年   12篇
  1983年   11篇
  1982年   11篇
  1981年   11篇
  1980年   12篇
  1979年   14篇
  1978年   4篇
  1977年   6篇
  1974年   4篇
  1972年   4篇
  1959年   3篇
排序方式: 共有1619条查询结果,搜索用时 15 毫秒
61.
The mechanism of O2 protection of nitrogenase in the heterocysts of Anabaena cylindrica was studied in vivo. Resistance to O2 inhibition of nitrogenase activity correlated with the O2 tension of the medium in which heterocyst formation was induced. O2 resistance also correlated with the apparent Km for acetylene, indicating that O2 tension may influence the development of a gas diffusion barrier in the heterocysts. The role of respiratory activity in protecting nitrogenase from O2 that diffuses into the heterocyst was studied using inhibitors of carbon metabolism. Reductant limitation induced by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea increased the O2 sensitivity of in vivo acetylene reduction. Azide, at concentrations (30 mM) sufficient to completely inhibit dark nitrogenase activity (a process dependent on oxidative phosphorylation for its ATP supply), severely inhibited short-term light-dependent acetylene reduction in the presence of O2 but not in its absence. After 3 h of aerobic incubation in the presence of 20 mM azide, 75% of cross-reactive component I (Fe-Mo protein) in nitrogenase was lost; less than 35% was lost under microaerophilic conditions. Sodium malonate and monofluoroacetate, inhibitors of Krebs cycle activity, had only small inhibitory effects on nitrogenase activity in the light and on cross-reactive material. The results suggest that oxygen protection is dependent on both an O2 diffusion barrier and active respiration by the heterocyst.  相似文献   
62.
Reipa V  Holden MJ  Vilker VL 《Biochemistry》2007,46(45):13235-13244
Putidaredoxin reductase (PdR) is the flavin protein that carries out the first electron transfer involved in the cytochrome P450cam catalytic cycle. In PdR, the flavin adenine dinucleotide (FAD/FADH2) redox center acts as a transformer by accepting two electrons from soluble nicotinamide adenine dinucleotide (NAD+/NADH) and donating them in two separate, one-electron-transfer steps to the iron-sulfur protein putidaredoxin (Pdx). PdR, like the two more intensively studied monoflavin reductases, adrenodoxin reductase (AdR) and ferredoxin-NADP+ reductase (FNR), has no other active redox moieties (e.g., sulfhydryl groups) and can exist in three different oxidation states: (i) oxidized quinone, (ii) one-electron reduced semiquinone (stable neutral species (blue) or unstable radical anion (red)), and (iii) two-electron fully reduced hydroquinone. Here, we present reduction potential measurements for PdR in support of a thermodynamic model for the modulation of equilibria among the redox components in this initial electron-transfer step of the P450 cycle. A spectroelectrochemical technique was used to measure the midpoint oxidation-reduction potential of PdR that had been carefully purified of all residual NAD+, E0' = -369 +/- 10 mV at pH 7.6, which is more negative than previously reported and more negative than the pyridine nucleotide NADH/NAD+ (-330 mV). After addition of NAD+, the formation of the oxidized reductase-oxidized pyridine nucleotide complex was followed by the two-electron-transfer redox reaction, PdRox:NAD+ + 2e- --> PdRrd:NAD+, when the electrode potential was lowered. The midpoint potential was a hyperbolic function of increasing NAD+ concentration, such that at concentrations of pyridine nucleotide typically found in an intracellular environment, the midpoint potential would be E0' = -230 +/- 10 mV, thereby providing the thermodynamically favorable redox equilibria that enables electron transfer from NADH. This thermodynamic control of electron transfer is a shared mechanistic feature with the adrenodoxin P450 and photosynthetic electron-transfer systems but is different from the kinetic control mechanisms in the microsomal P450 systems where multiple reaction pathways draw on reducing power held by NADPH-cytochrome P450 reductase. The redox measurements were combined with protein fluorescence quenching of NAD+ binding to oxidized PdR to establish that the PdRox:NAD+ complex (KD = 230 microM) is about 5 orders of magnitude weaker than PdRrd:NAD+ binding. These results are integrated with known structural and kinetic information for PdR, as well as for AdR and FNR, in support of a compulsory ordered pathway to describe the electron-transfer processes catalyzed by all three reductases.  相似文献   
63.
Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules.  相似文献   
64.
Tumor suppressor genes BRCA1 and BRCA2 function in a complex gene network that regulates homologous recombination and DNA double-strand break repair. Disruption of the BRCA-network through gene mutation, deletion, or RNAi-mediated silencing can sensitize cells to small molecule inhibitors of poly (ADP-ribose) polymerase (PARPi). Here, we demonstrate that BRCA-network disruption in the presence of PARPi leads to the selective induction and enhancement of interferon pathway and apoptotic gene expression in cultured tumor cells. In addition, we report PARPi cytotoxicity in BRCA1-deficient tumor cells is enhanced >10-fold when combined with interferon-γ. These findings establish a link between synthetic lethality of PARPi in BRCA-network disrupted cells and interferon pathway activation triggered by genetic instability.  相似文献   
65.
66.
Summary Xylogenesis has been studied in primary suspension cultures ofZinnia elegans L.: The wall patterns produced in culture closely resemble those described for intact tissues (annular, spiral, reticulate, scalariform, pitted). Using fluorescence microscopy and immuno-cytochemical techniques we have followed both the changes in wall deposition and microtubule organization during xylogenesis. Calcofluor white has been used to detect secondary wall deposition before it can be observed using either phase contrast or polarization optics. The development of tracheary elements can be divided into three stages: 1. microtubules grouped into bands without secondary wall deposition evident; 2. groups of microtubules subtending wall material only visible using Calcofluor white; 3. a complex microtubule pattern reflected by well developed wall thickenings detected using Calcofluor, phase contrast and polarization optics.  相似文献   
67.
The remarkable power amplifier [1] of the cochlea boosts low-level and compresses high-level vibrations of the basilar membrane (BM) [2]. By contributing maximally at the characteristic frequency (CF) of each point along its length, the amplifier ensures the exquisite sensitivity, narrow frequency tuning, and enormous dynamic range of the mammalian cochlea. The motor protein prestin in the outer hair cell (OHC) lateral membrane is a prime candidate for the cochlear power amplifier [3]. The other contender for this role is the ubiquitous calcium-mediated motility of the hair cell stereocilia, which has been demonstrated in vitro and is based on fast adaptation of the mechanoelectrical transduction channels [4, 5]. Absence of prestin [6] from OHCs results in a 40-60 dB reduction in cochlear neural sensitivity [7]. Here we show that sound-evoked BM vibrations in the high-frequency region of prestin(-/-) mice cochleae are, surprisingly, as sensitive as those of their prestin(+/+) siblings. The BM vibrations of prestin(-/-) mice are, however, broadly tuned to a frequency approximately a half octave below the CF of prestin(+/+) mice at similar BM locations. The peak sensitivity of prestin(+/+) BM tuning curves matches the neural thresholds. In contrast, prestin(-/-) BM tuning curves at their best frequency are >50 dB more sensitive than the neural responses. We propose that the absence of prestin from OHCs, and consequent reduction in stiffness of the cochlea partition, changes the passive impedance of the BM at high frequencies, including the CF. We conclude that prestin influences the cochlear partition's dynamic properties that permit transmission of its vibrations into neural excitation. Prestin is crucial for defining sharp and sensitive cochlear frequency tuning by reducing the sensitivity of the low-frequency tail of the tuning curve, although this necessitates a cochlear amplifier to determine the narrowly tuned tip.  相似文献   
68.
Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS), yet EBV''s role in MS remains elusive. We utilized murine gamma herpesvirus 68 (γHV-68), the murine homolog to EBV, to examine how infection by a virus like EBV could enhance CNS autoimmunity. Mice latently infected with γHV-68 developed more severe EAE including heightened paralysis and mortality. Similar to MS, γHV-68EAE mice developed lesions composed of CD4 and CD8 T cells, macrophages and loss of myelin in the brain and spinal cord. Further, T cells from the CNS of γHV-68 EAE mice were primarily Th1, producing heightened levels of IFN-γ and T-bet accompanied by IL-17 suppression, whereas a Th17 response was observed in uninfected EAE mice. Clearly, γHV-68 latency polarizes the adaptive immune response, directs a heightened CNS pathology following EAE induction reminiscent of human MS and portrays a novel mechanism by which EBV likely influences MS and other autoimmune diseases.  相似文献   
69.
A survey was made to determine the distribution of the enzyme neuraminidase among 76 strains of Clostridium perfringens. Representative strains from each toxigenic type (A to F) and atypical C. perfringens type A food-poisoning strains of both American and English (Hobbs types) origin were tested. Both the American food-poisoning and nonfood-poisoning associated cultures consisted of both neuraminidase-positive and -negative strains. Furthermore, American strains which could not be differentiated from the original Hobbs cultures consisted of both neuraminidase-positive and -negative representatives. In contrast, the English (Hobbs) strains uniformly failed to produce an active intracellular or extracellular neuraminidase. No enzyme activity was detected in these strains when cultures were grown in different growth media, when grown in the presence of substrate (neuraminlactose), or upon extended incubation of enzyme preparations with substrate. With the exception of a type F strain, representative strains of the other toxigenic types (A to F) produced neuraminidase; 85% of the typical type A strains contained the enzyme.  相似文献   
70.
Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs) isolated from larval midgut cell-conditioned medium or pupal hemolymph. In this work, we show that the responses to MDF-2 and MP in H. virescens stem cells decayed at different time intervals, implying that the receptors or response cascades for stem cell differentiation and multiplication may be different. However, the processes appeared to be linked, since conditioned medium and MDF-2 prevented the action of MP on stem cells; MP by itself appeared to repress stem cell differentiation. Epidermal growth factor, retinoic acid, and platelet-derived growth factor induced isolated midgut stem cells of H. virescens and Lymantria dispar to multiply and to differentiate to mature midgut cells characteristic of prepupal, pupal, and adult lepidopteran midgut epithelium, and to squamous-like cells and scales not characteristic of midgut tissue instead of the larval types of mature midgut epithelium induced by the MDFs. Midgut stem cells appear to be multipotent and their various differentiated fates can be influenced by several growth factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号