首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3519篇
  免费   461篇
  国内免费   2篇
  2022年   25篇
  2021年   46篇
  2020年   37篇
  2019年   37篇
  2018年   53篇
  2017年   45篇
  2016年   95篇
  2015年   104篇
  2014年   136篇
  2013年   158篇
  2012年   201篇
  2011年   190篇
  2010年   123篇
  2009年   126篇
  2008年   156篇
  2007年   194篇
  2006年   166篇
  2005年   157篇
  2004年   173篇
  2003年   134篇
  2002年   131篇
  2001年   76篇
  2000年   66篇
  1999年   74篇
  1998年   45篇
  1997年   49篇
  1996年   42篇
  1995年   35篇
  1994年   53篇
  1993年   42篇
  1992年   58篇
  1991年   48篇
  1990年   45篇
  1989年   55篇
  1988年   66篇
  1987年   66篇
  1986年   58篇
  1985年   47篇
  1984年   43篇
  1983年   39篇
  1982年   40篇
  1981年   37篇
  1980年   27篇
  1979年   41篇
  1978年   27篇
  1977年   30篇
  1976年   24篇
  1975年   30篇
  1974年   31篇
  1973年   32篇
排序方式: 共有3982条查询结果,搜索用时 15 毫秒
101.
The bioavailability of selenium (Se) was determined in bacterial strains that reduce selenite to red elemental Se (Seo). A laboratory strain ofBacillus subtilis and a bacterial rod isolated from soil in the vicinity of the Kesterson Reservoir, San Joaquin Valley, CA, (Microbacterium arborescens) were cultured in the presence of 1 mM sodium selenite (Na2SeO3). After harvest, the washed, lyophilizedB. subtilis andM. arborescens samples contained 2.62 and 4.23% total Se, respectively, which was shown to consist, within error, entirely of Seo. These preparations were fed to chicks as supplements to a low-Se, vitamin E-free diet. Three experiments showed that the Se in both bacteria had bioavailabilities of approx 2% that of selenite. A fourth experiment revealed that gray Seo had a bioavailability of 2% of selenite, but that the bioavailability of red Seo depended on the way it was prepared (by reduction of selenite). When glutathione was the reductant, bioavailability resembled that of gray Seo and bacterial Se; when ascorbate was the reductant, bioavailability was twice that level (3–4%). These findings suggest that aerobic bacteria such asB. subtilis andM. arborescens may be useful for the bioremediation of Se-contaminated sites, i.e., by converting selenite to a form of Se with very low bioavailability.  相似文献   
102.
Little is known about the major histocompatibility (Mhc) genes of birds in different taxonomic groups or about how Mhc genes may be organized in avian species divergent by evolution or habitat. Yet it seems likely that much might be learned from birds about the evolution, organization, and function of this intricate complex of polymorphic genes. In this study a close relative of the chicken, the ring-necked pheasant (Phasianus colchicus), was examined for the presence and organization of Mhc B-G genes. The patterns of restriction fragments revealed by chicken B-G probes in Southern hybridizations and the patterns of pheasant erythrocyte polypeptides revealed in immunoblots by antisera raised against chicken B-G polypeptides provide genetic, molecular, and biochemical data confirming earlier serological evidence for the presence of B-G genes in the pheasant, and hence, the presence of a family of B-G genes in at least a second species of birds. The high polymorphism exhibited by the pheasant B-G gene family allowed genetic differences among individuals within the small experimental population in this study to be detected easily by restriction fragment patterns. Further evidence was found for the organization of the pheasant Mhc class I and class II genes into genetically independent clusters. Whether these gene clusters are fully comparable to the B and Rfp-Y systems in the chicken or whether yet another organization of Mhc genes has been encountered in the pheasant remains to be determined.  相似文献   
103.
 The T-cell receptor (TCR) is a highly variable molecule composed of two polypeptide chains that recognize antigenic peptides in the context of major histocompatibility complex (MHC) molecules. In this study, we describe a sequence-based search for germline polymorphisms in the variable (V) gene segments of the human TCRA/D locus. Thirty different V gene segments were amplified from six to eight unrelated individuals and sequenced from low melting point agarose. Twenty-seven polymorphisms were identified in 15 V gene segments. These polymorphisms are mainly single nucleotide substitutions, but an insertion/deletion polymorphism and a single dinucleotide repeat with variable length were also seen. Of the 15 sequence variations found in the coding regions, six are silent and nine encode amino acid changes. All of the amino acid changes are found at non-conserved residues, frequently in the hypervariable regions, where they may influence MHC and/or peptide recognition. Therefore, it is possible that germline variations in TCR genes could influence an individual’s immune response, and may also contribute to susceptibility to diseases such as autoimmunity. Received: 9 January 1996 / Revised: 22 February 1996  相似文献   
104.
105.
106.
We cloned the GLC7/DIS2S1 gene by complementation of the cid1-226 mutation, which relieves glucose repression in Saccharomyces cerevisiae. GLC7 encodes the catalytic subunit of type 1 protein phosphatase (PP1). Genetic analysis and sequencing showed that cid1-226 is an allele of GLC7, now designated glc7-T152K, which alters threonine 152 to lysine. We also show that the glc7-1 and glc7-T152K alleles cause distinct phenotypes: glc7-1 causes a severe defect in glycogen accumulation but does not relieve glucose repression, whereas glc7-T152K does not prevent glycogen accumulation. These findings are discussed in light of evidence that interaction with different regulatory or targeting subunits directs the participation of PP1 in diverse cellular regulatory mechanisms. Finally, genetic studies suggest that PP1 functions antagonistically to the SNF1 protein kinase in the regulatory response to glucose.  相似文献   
107.
Carex lasiocarpa and C. pellita (sect. Carex) share a very similar morphology and have overlapping ranges in North America, but are found in different habitats characterized by contrasting soil types and pH. We studied allozyme variation and chromosome numbers to assess genetic differentiation between the two taxa. Both principal components analysis on the allele frequencies from 12 putative enzyme-coding loci and cluster analysis of genetic identities separated 51 sampled populations into two groups that were consistent with recognized structural differences between C. lasiocarpa and C. pellita. Mean within-group genetic identities were 0.95 for C. lasiocarpa and 0.93 for C. pellita; mean between-group genetic identity was 0.81. With the exception of two rare alleles, the alleles of C. pellita were a subset of those found in C. lasiocarpa. Principal components analysis of measurements of structural characters from voucher specimens representing 46 populations also separated the two species with minimal overlap. Meiotic squashes of microsporocytes revealed haploid chromosome numbers of 38 and 38 + 1 for C. lasiocarpa and 41 and 40 + 1 for C. pellita. These data support the continued recognition of the two taxa as distinct species, and suggest that C. pellita may be a daughter species still in the process of divergence from C. lasiocarpa.  相似文献   
108.
L. G. Vallier  D. Coons  L. F. Bisson    M. Carlson 《Genetics》1994,136(4):1279-1285
The GRR1 gene of Saccharomyces cerevisiae affects glucose repression, cell morphology, divalent cation transport and other processes. We present a kinetic analysis showing that the grr1 mutant is also defective in high affinity glucose transport. In combination with a mutation in SNF3, a member of the glucose transporter gene family, grr1 strikingly impairs growth on glucose. These findings suggest that GRR1 and SNF3 affect glucose transport by distinct pathways. The mutation rgt1-1, a suppressor of snf3, restores both glucose transport and glucose repression to a grr1 mutant, but does not remedy the morphological defect. We suggest that GRR1 affects the glucose sensing process and that the association between transport and regulation may reflect the involvement of a transporter in glucose sensing.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号