首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7500篇
  免费   490篇
  国内免费   1篇
  7991篇
  2023年   34篇
  2022年   85篇
  2021年   150篇
  2020年   94篇
  2019年   128篇
  2018年   194篇
  2017年   162篇
  2016年   235篇
  2015年   377篇
  2014年   442篇
  2013年   572篇
  2012年   643篇
  2011年   647篇
  2010年   375篇
  2009年   392篇
  2008年   495篇
  2007年   454篇
  2006年   464篇
  2005年   366篇
  2004年   399篇
  2003年   327篇
  2002年   328篇
  2001年   55篇
  2000年   47篇
  1999年   55篇
  1998年   59篇
  1997年   45篇
  1996年   40篇
  1995年   32篇
  1994年   23篇
  1993年   26篇
  1992年   33篇
  1991年   25篇
  1990年   27篇
  1989年   20篇
  1988年   21篇
  1987年   10篇
  1986年   11篇
  1985年   18篇
  1984年   18篇
  1983年   9篇
  1982年   13篇
  1981年   7篇
  1980年   2篇
  1979年   8篇
  1978年   2篇
  1977年   5篇
  1974年   4篇
  1973年   2篇
  1967年   2篇
排序方式: 共有7991条查询结果,搜索用时 15 毫秒
41.
Biological Invasions - The widespread invasive success of Ulex europaeus, a thorny shrub native to NW Europe, remains to be understood from a functional perspective. According to the Enemy Release...  相似文献   
42.
Exposure to lead induces oxidative stress and renal damage. Although most forms of oxidative stress are characterized by simultaneous elevation of nitrogen and oxidative species, lead-induced oxidative stress is unusual in that it is associated with a reduction in nitric oxide (NO) levels in the kidney. The role of NO in kidney injury is controversial; some studies suggest that it is associated with renal injury, whereas others show that it exerts protective effects. Concentration-dependent effects have also been proposed, linking low levels with vasodilatation and high levels with toxicity. The aim of this study was to evaluate the effects of melatonin co-exposure on the lead-induced reduction in renal NO levels. We found that sub-acute intraperitoneal administration of 10 mg/kg/day of lead for 15 days induced toxic levels of lead in the blood and caused renal toxicity (pathological and functional). Under our experimental conditions, lead induced an increase in lipid peroxidation and a decrease in NO. Melatonin co-treatment decreased lead-induced oxidative stress (peroxidation level) and toxic effects on kidneys without altering the lead-induced reduction in renal NO. These results suggest that, in our experimental model, the reduction in renal NO levels by lead exposure is not the only responsible factor for lead-induced kidney damage.  相似文献   
43.
Plant Molecular Biology - Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for...  相似文献   
44.
Aquaporin-4 (AQP-4), the most important water channel in the brain, is expressed by astrocyte end feet abutting microvessels. Altered expression levels of AQP-4 and redistribution of the protein throughout the membranes of cells found in glioblastoma multiforme (GBM) lead to development of the edema often found surrounding the tumor mass. Dysregulation of AQP-4 also occurs in hippocampal sclerosis and cortical dysplasia in patients with refractory partial epilepsy. This work reports on analysis of the relationship between AQP-4 expression and the incidence of epileptic seizures in patients with GBM. Immunohistochemical and polymerase chain reaction techniques were used to evaluate AQP-4 in biopsy specimens from 19 patients with GBM, 10 of who had a history of seizures before surgery. AQP-4 mRNA levels were identical in the two groups of patients, but AQP-4 expression was more frequently detected on the GBM membranes from specimens of patients with seizures than from individuals without (10 versus 2, P < 0.001). We conclude that reduced expression of cell surface AQP-4 is characteristic of GBM patients without seizures, likely attributable to a posttranslational mechanism.  相似文献   
45.
In this work, in silico flux balance analysis is used for predicting the metabolic behavior of Streptomyces clavuligerus during clavulanic acid production. To choose the best objective function for use in the analysis, three different optimization problems are evaluated inside the flux balance analysis formulation: (i) maximization of the specific growth rate, (ii) maximization of the ATP yield, and (iii) maximization of clavulanic acid production. Maximization of ATP yield showed the best predictions for the cellular behavior. Therefore, flux balance analysis using ATP as objective function was used for analyzing different scenarios of nutrient limitations toward establishing the effect of limiting the carbon, nitrogen, phosphorous, and oxygen sources on the growth and clavulanic acid production rates. Obtained results showed that ammonia and phosphate limitations are the ones most strongly affecting clavulanic acid biosynthesis. Furthermore, it was possible to identify the ornithine flux from the urea cycle and the α‐ketoglutarate flux from the TCA cycle as the most determinant internal fluxes for promoting clavulanic acid production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1226–1236, 2015  相似文献   
46.
47.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
48.
Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy.  相似文献   
49.
Alzheimer disease (AD) is the most common form of dementia in the elderly, progressively affecting the cognitive functions with a complex diagnostic procedure that limits the time for a prompt intervention. In this study we optimized a reliable protocol for the analysis of AD patients and healthy subjects' serum using the Surface Enhanced Raman Spectroscopy (SERS), taking into consideration the effect of different variables on the final spectra, analyzed and compared through multivariate analysis and correlated with hippocampus volume. As results, we demonstrated a statistical difference between the spectra collected from the two investigated groups, with an accuracy, precision and specificity of respectively 83%, 86%, and 86%. The correlation of these data with those obtained from MRI, demonstrated a direct correlation between Raman spectra and hippocampus degeneration showing the Raman Spectroscopy (RS) as a potential tool for the monitoring of AD progression and rehabilitation treatments.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号